首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss the spectral properties of the Laplacian for domains Ω with fractal boundaries. The main goal of the article is to find the second term of spectral asymptotics of the counting functionN(λ) or its integral transformations: Θ-function, ξ-function. For domains with smooth boundaries the order of the second term ofN(λ) (under “billiard condition”) is one half of the dimension of the boundary. In the case of fractal boundaries the well-known Weyl-Berry hypothesis identifies it with one half of the Hausdorff dimension of ∂Ω, and the modified Weyl-Berry conjecture with one half of the Minkowski dimension of ∂Ω. We find the spectral asymptotics for three natural broad classes of fractal boundaries (cabbage type, bubble type and web type) and show that the Minkowski dimension gives the proper answer for cabbage type of boundaries (due to “one dimensional structure” of the cabbage type fractals), but the answers are principally different in the two other cases.  相似文献   

2.
Invariant Tori in Hamiltonian Systems with Impacts   总被引:2,自引:0,他引:2  
It is shown that a large class of solutions in two-degree-of-freedom Hamiltonian systems of billiard type can be described by slowly varying one-degree-of-freedom Hamiltonian systems. Under some non-degeneracy conditions such systems are found to possess a large set of quasiperiodic solutions filling out two dimensional tori, which correspond to caustics in the classical billiard. This provides a unified proof of existence of quasiperiodic solutions in convex billiards and other systems with impacts including classical billiard in electric and magnetic fields, dual billiard, and Fermi–Ulam systems. Received: 8 September 1999 / Accepted: 16 November 1999  相似文献   

3.
A dispersing billiard (Lorentz gas) and focusing billiards (in the form of a stadium) with time-dependent boundaries are considered. The problem of a particle acceleration in such billiards is studied. For the Lorentz gas two cases of the time-dependence are investigated: stochastic perturbations of the boundary and its periodic oscillations. Two types of focusing billiards with periodically forced boundaries are explored: stadium with strong chaotic properties and a near-rectangle stadium. It is shown that in all cases billiard particles can reach unbounded velocities. Average velocities of the particle ensemble as functions of time and the number of collisions are obtained.  相似文献   

4.
We consider a slowly rotating rectangular billiard with moving boundaries and use canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution, certain resonance conditions can be satisfied. Correspondingly, phenomena of scattering on a resonance and capture into a resonance happen in the system. These phenomena lead to destruction of adiabatic invariance and to unlimited acceleration of the particle.  相似文献   

5.
In this paper, we investigate the localization properties of eigenstates for the infinite periodic and closed versions of the generalized ripple billiard (exemplifying corrugated waveguides and corrugated cavities, respectively) having Dirichlet and Neumann boundary conditions. In particular, we demonstrate the existence of strongly energy-localized eigenstates that suffer repulsion, in configuration space, from highly corrugated billiard boundaries. Thus, exhibiting the repulsion effect as a universal property present in billiards with corrugated boundaries. We also characterize this repulsion effect (both, in energy and in configuration space) and provide heuristic expressions for the repelled eigenstate profiles in configuration representation.  相似文献   

6.
We explore the dynamical evolution of an ensemble of noninteracting particles propagating freely in an elliptical billiard with harmonically driven boundaries. The existence of Fermi acceleration is shown thereby refuting the established assumption that smoothly driven billiards whose static counterparts are integrable do not exhibit acceleration dynamics. The underlying mechanism based on intermittent phases of laminar and stochastic behavior of the strongly correlated angular momentum and velocity motion is identified and studied with varying parameters. The diffusion process in velocity space is shown to be anomalous and we find that the corresponding characteristic exponent depends monotonically on the breathing amplitude of the billiard boundaries. Thus it is possible to tune the acceleration law in a straightforwardly controllable manner.  相似文献   

7.
We present a theoretical computation of the Husimi distribution function in phase-space for studying the semiclassical dynamics of the circular electron billiard subjected to a constant magnetic field in the perpendicular direction. The results reveal that with the increase of the applied magnetic field the peaks of Husimi function tend to the billiard boundaries, along with the movements a periodic splitting-recombining (alternative single-double) peak structure is arisen. This fact implies the localization of the eigenstates and coincides to the classical trajectory distribution what we obtained by use of representation on the billiard boundary. It becomes possible to compare the local properties of the quantum and classical distributions. Our analysis provides a new perspective to understand the quantum-classical correspondence.  相似文献   

8.
This is the third in a series of three papers on quantum billiards with elliptic and ellipsoidal boundaries. In the present paper we show that the integrable billiard inside a prolate ellipsoid has an isolated singular point in its bifurcation diagram and, therefore, exhibits classical and quantum monodromy. We derive the monodromy matrix from the requirement of smoothness for the action variables for zero angular momentum. The smoothing procedure is illustrated in terms of energy surfaces in action space including the corresponding smooth frequency map. The spectrum of the quantum billiard is computed numerically and the expected change in the basis of the lattice of quantum states is found. The monodromy is already present in the corresponding two-dimensional billiard map. However, the full three degrees of freedom billiard is considered as the system of greater relevance to physics. Therefore, the monodromy is discussed as a truly three-dimensional effect.  相似文献   

9.
秦陈陈  杨双波 《物理学报》2014,63(14):140507-140507
研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系.观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态.还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.  相似文献   

10.
We present a functional analytic framework based on the spectrum of the transfer operator to study billiard maps associated with perturbations of the periodic Lorentz gas. We show that recently constructed Banach spaces for the billiard map of the classical Lorentz gas are flexible enough to admit a wide variety of perturbations, including: movements and deformations of scatterers; billiards subject to external forces; nonelastic reflections with kicks and slips at the boundaries of the scatterers; and random perturbations comprised of these and possibly other classes of maps. The spectra and spectral projections of the transfer operators are shown to vary continuously with such perturbations so that the spectral gap enjoyed by the classical billiard persists and important limit theorems follow.  相似文献   

11.
We consider classical billiards in plane, connected, but not necessarily bounded domains. The charged billiard ball is immersed in a homogeneous, stationary magnetic field perpendicular to the plane. The part of dynamics which is not trivially integrable can be described by a bouncing map. We compute a general expression for the Jacobian matrix of this map, which allows us to determine stability and bifurcation values of specific periodic orbits. In some cases, the bouncing map is a twist map and admits a generating function. We give a general form for this function which is useful to do perturbative calculations and to classify periodic orbits. We prove that billiards in convex domains with sufficiently smooth boundaries possess invariant tori corresponding to skipping trajectories. Moreover, in strong field we construct adiabatic invariants over exponentially large times. To some extent, these results remain true for a class of nonconvex billiards. On the other hand, we present evidence that the billiard in a square is ergodic for some large enough values of the magnetic field. A numerical study reveals that the scattering on two circles is essentially chaotic.  相似文献   

12.
The billiard system of Benettin and Strelcyn [Phys. Rev. A 17, 773-785 (1978)] is generalized to a two-parameter family of different shapes. Its boundaries are composed of circular segments. The family includes the integrable limit of a circular boundary, convex boundaries of various shapes with mixed dynamics, stadiums, and a variety of nonconvex boundaries, partially with ergodic behavior. The extent of chaos has been measured in two ways: (i) in terms of phase space volume occupied by the main chaotic band; and (ii) in terms of the Lyapunov exponent of that same region. The results are represented as a kind of phase diagram of chaos. We observe complex regularities, related to the bifurcation scheme of the most prominent resonances. A detailed stability analysis of these resonances up to period six explains most of these features. The phenomenon of breathing chaos [Nonlinearity 3, 45-67 (1990)]-that is, the nonmonotonicity of the amount of chaos as a function of the parameters-observed earlier in a one-parameter study of the gravitational wedge billiard, is part of the picture, giving support to the conjecture that this is a fairly common global scenario. (c) 1996 American Institute of Physics.  相似文献   

13.
Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.  相似文献   

14.
Thermal rectification in billiardlike systems   总被引:1,自引:0,他引:1  
We study the thermal rectification phenomenon in billiard systems with interacting particles. This interaction induces a local dynamical response of the billiard to an external thermodynamic gradient. To explain this dynamical effect we study the steady state of an asymmetric billiard in terms of the particle and energy reflection coefficients. This allows us to obtain expressions for the region in parameter space where large thermal rectifications are expected. Our results are confirmed by extensive numerical simulations.  相似文献   

15.
We consider billiards in the two-dimensional torus with convex obstacles. Central Limit Theorems have been established for regular functions for the billiard transformation in [2], [1] and [14]. We are interested here in the problem of the rate of convergence. In this paper, we establish a rate in (for any α > 0) for the billiard transformation, by adapting the proof of [7, 6, 8]. In our proof, we use a strong decorrelation result obtained by the method developped in [14] for the study of general hyperbolic systems. Moreover, we establish a rate of convergence in in the Central Limit Theorem for the billiard flow. Received: 23 April 2001 / Accepted: 3 August 2001  相似文献   

16.
Gravitational billiards provide a simple method for the illustration of the dynamics of Hamiltonian systems. Here we examine a new billiard system with two parameters, which exhibits, in two limiting cases, the behaviors of two previously studied one-parameter systems, namely the wedge and parabolic billiard. The billiard consists of a point mass moving in two dimensions under the influence of a constant gravitational field with a hyperbolic lower boundary. An iterative mapping between successive collisions with the lower boundary is derived analytically. The behavior of the system during transformation from the wedge to the parabola is investigated for a few specific cases. It is surprising that the nature of the transformation depends strongly on the parameter values. (c) 1999 American Institute of Physics.  相似文献   

17.
18.
Approximating Multi-Dimensional Hamiltonian Flows by Billiards   总被引:2,自引:2,他引:0  
The behavior of a point particle traveling with a constant speed in a region , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and microwave dynamics). Here we develop methodologies for examining the validity and accuracy of this approximation. We consider families of smooth potentials , that, in the limit , become singular hard-wall potentials of multi-dimensional billiards. We define auxiliary billiard domains that asymptote, as to the original billiards, and provide, for regular trajectories, asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the C r norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials that limit to the multi-dimensional close to ellipsoidal billiards, we predict when the billiard’s separatrix splitting (which appears, for example, in the nearly flat and nearly oblate ellipsoids) persists for various types of potentials.  相似文献   

19.
We study the billiard map corresponding to a periodic Lorentz gas in 2-dimensions in the presence of small holes in the table. We allow holes in the form of open sets away from the scatterers as well as segments on the boundaries of the scatterers. For a large class of smooth initial distributions, we establish the existence of a common escape rate and normalized limiting distribution. This limiting distribution is conditionally invariant and is the natural analogue of the SRB measure of a closed system. Finally, we prove that as the size of the hole tends to zero, the limiting distribution converges to the smooth invariant measure of the billiard map.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号