首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the Harris-Luck criterion the relevance of a fluctuating interaction at the critical point is connected to the value of the fluctuation exponent . Here we consider different types of relevant fluctuations in the quantum Ising chain and investigate the universality class of random as well as deterministic-aperiodic models. At the critical point the random and aperiodic systems behave similarly, due to the same type of extreme broad distribution of the energy scales at low energies. The critical exponents of some averaged quantities are found to be a universal function of , but some others do depend on other parameters of the distribution of the couplings. In the off-critical region there is an important difference between the two systems: there are no Griffiths singularities in aperiodic models. Received: 18 November 1997 / Received in final form: 24 November 1997 / Accepted: 8 January 1997  相似文献   

2.
A two-dimensional lattice-gas model with square symmetry is investigated by using the real-space renormalization group (RSRG) approach with blocks of different size and symmetries. It has been shown that the precision of the method depends strongly not only on the number of sites in the block but also on its symmetry. In general, the accuracy of the method increases with the number of sites in the block. The minimal relative error in determining the critical values of the interaction parameters is equal to . Using the RSRG method, we have explored phase diagrams of both a two-dimensional Ising spin model and of a square lattice gas with lateral interactions between adparticles. We also have investigated the influence of the attractive and repulsive interactions on both the thermodynamic properties of the lattice gas and the diffusion of adsorbed particles over surface. We have calculated adsorption isotherms and coverage dependences of the pair correlation function, isothermal susceptibility and the chemical diffusion coefficient. In addition, we have included in our analysis the interaction of the activated particle in the saddle point with its nearest neighbors. We have also used Monte Carlo (MC) technique to calculate these dependences. Despite the fact that both methods constitute very different approaches, the correspondence of the numerical data is surprisingly good. Therefore, we conclude that the RSRG approach can be applied to characterize the thermodynamic and kinetic properties of systems of particles with strong lateral interactions. Received 1st September 1998 and Received in final form 8 March 2000  相似文献   

3.
Using Monte-Carlo techniques, the critical behaviour at edges and corners of the three-dimensional Ising model is studied. In particular, the critical exponent of the local magnetization at edges formed by two intersecting free surfaces is estimated to be, as a function of the opening angle , for , for , and for . The critical exponent of the corner magnetization of a cube is found to be . The Monte-Carlo estimates are compared to results of mean field theory, renormalization group calculations and high temperature series expansions. Received: 29 January 1998 / Accepted: 17 March 1998  相似文献   

4.
We have studied the branched polymers situated on the two-dimensional modified Sierpinski gasket lattice of base b =3in the presence of monomer-monomer and monomer-surface interactions. We have determined critical properties of this model and found that some surface crossover exponents differed much from that in the case of the standard SG. Received 13 September 1999 and Received in final form 20 October 1999  相似文献   

5.
The effect of imperfections on surface critical properties is studied for Ising models with nearest-neighbour ferromagnetic couplings on simple cubic lattices. In particular, results of Monte Carlo simulations for flat, perfect surfaces are compared to those for flat surfaces with random, “weak” or “strong”, interactions between neighbouring spins in the surface layer, and for surfaces with steps of monoatomic height. Surface critical exponents at the ordinary transition, in particular ,are found to be robust against these perturbations. Received: 7 October 1997 / Accepted: 19 November 1997  相似文献   

6.
We study the influence of an aperiodic extended surface perturbation on the surface critical behaviour of the two-dimensional Ising model in the extreme anisotropic limit. The perturbation decays as a power of the distance l from the free surface with an oscillating amplitude where follows some aperiodic sequence with an asymptotic density equal to 1/2 so that the mean amplitude vanishes. The relevance of the perturbation is discussed by combining scaling arguments of Cordery and Burkhardt for the Hilhorst-van Leeuwen model and Luck for aperiodic perturbations. The relevance-irrelevance criterion involves the decay exponent , the wandering exponent which governs the fluctuation of the sequence and the bulk correlation length exponent . Analytical results are obtained for the surface magnetization which displays a rich variety of critical behaviours in the -plane. The results are checked through a numerical finite-size-scaling study. They show that second-order effects must be taken into account in the discussion of the relevance-irrelevance criterion. The scaling behaviours of the first gap and the surface energy are also discussed. Received 1 December 1998  相似文献   

7.
The role of the geometric fluctuations on the multifractal properties of the local magnetization of aperiodic ferromagnetic Ising models on hierarchical lattices is investigated. The geometric fluctuations are introduced by generalized Fibonacci sequences. The local magnetization is evaluated via an exact recurrent procedure encompassing real space renormalization group decimation. The symmetries of the local magnetization patterns induced by the aperiodic couplings is found to be strongly (weakly) different, with respect to the ones of the corresponding homogeneous systems, when the geometric fluctuations are relevant (irrelevant) to change the critical properties of the system. At the criticality, the measure defined by the local magnetization is found to exhibit a non-trivial F(α) spectra being shifted to higher values of α when relevant geometric fluctuations are considered. The critical exponents are found to be related with some special points of the F(α) function and agree with previous results obtained by the quite distinct transfer matrix approach. Received 2 April 2001 and Received in final form 14 August 2001  相似文献   

8.
On social percolation and small world network   总被引:1,自引:0,他引:1  
The social percolation model is generalized to include the propagation of two mutually exclusive competing effects on a one-dimensional ring and a two-dimensional square lattice. It is shown that the result depends significantly on which effect propagates first i.e. it is a non-commutative phenomenon. Then the propagation of one effect is studied on a small network. It generalizes the work of Moore and Newman of a disease spread to the case where the susceptibility of the population is random. Three variants of the Domany-Kinzel model are given. One of them (delayed) does not have a chaotic region for some value of the delay weight. Received 24 February 2000  相似文献   

9.
Using the symmetry of ( d +1)-simplex fractals with decimation number b =2, the current distribution has been determined. Then using the renormalization group technique, based on the independent Schur's invariant polynomials of current distributions, the multifractal spectrum of even moments of current distributions has been evaluated analytically up to order six for an arbitrary value of d. Also the scaling exponents of order 8 and order 10 have been calculated numerically up to d =30. Received: 19 November 1997 / Revised: 21 January 1998 / Accepted: 9 February 1998  相似文献   

10.
We consider the optimal paths in a d-dimensional lattice, where the bonds have isotropically correlated random weights. These paths can be interpreted as the ground state configuration of a simplified polymer model in a random potential. We study how the universal scaling exponents, the roughness and the energy fluctuation exponent, depend on the strength of the disorder correlations. Our numerical results using Dijkstra's algorithm to determine the optimal path in directed as well as undirected lattices indicate that the correlations become relevant if they decay with distance slower than 1/r in d = 2 and 3. We show that the exponent relation 2ν - ω = 1 holds at least in d = 2 even in case of correlations. Both in two and three dimensions, overhangs turn out to be irrelevant even in the presence of strong disorder correlations. Received 20 December 2002 / Received in final form 10 April 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: schorr@lusi.uni-sb.de  相似文献   

11.
We investigate the two-dimensional eight-states ferromagnetic Potts model in the Voronoi-Delaunay tessellation. In this study, we assume that the coupling factor J varies with the distance r between the first neighbors as , with . The disordered system is simulated applying the single-cluster Monte-Carlo update algorithm and the reweighting technique. We find that this model displays a first-order phase transition if , in agreement with previous recent studies. For and 1.0, a typical second order transition is observed and the critical exponents for magnetization and susceptibility are calculated. Received 19 May 1999 and Received in final form 2 June 1999  相似文献   

12.
The influence of surface defects on the critical properties of magnetic films is studied for Ising models with nearest-neighbour ferromagnetic couplings. The defects include one or two adjacent lines of additional atoms and a step on the surface. For the calculations, both density-matrix renormalization group and Monte Carlo techniques are used. By changing the local couplings at the defects and the film thickness, non-universal features as well as interesting crossover phenomena in the magnetic exponents are observed. Received 27 July 2000 and Received in final form 5 October 2000  相似文献   

13.
We present off-lattice Monte Carlo simulations of site-bond percolation of semi-penetrable spheres or, equivalently, of hard spheres with a finite bond range. We will show that the crucial parameter is the effective volume fraction ( φe), i.e. the volume that is occupied or within the bond range of at least one particle. For the equivalent system of semi-penetrable spheres 1 - φe is the porosity. The bond percolation threshold (p b) can be described in terms of φe by a simple analytical expression: log(φe)/log(φec) + log(p b)/log(p bc) = 1, with p bc = 0.12 independent of the bond range and φec a constant that decreases with increasing bond range. Received: 10 March 2003 / Accepted: 23 April 2003 / Published online: 21 May 2003 RID="a" ID="a"e-mail: jean-christophe.gimel@univ-lemans.fr  相似文献   

14.
The survival of autocatalytic agents in hostile environments depends on their ability to adapt their spatial configuration to local fluctuations. A model of diffusive reactants that extract the advantage of spatio-temporal fluctuations associated with the stochastic wandering of diffusive catalysts is discussed. Two arguments are presented for the basic processes behind this extraordinary behavior. In the first, the local colonies that evolve around any spatially advantageous region overlap in space-time and an infinite directed percolation cluster emerges. The second argument is based on the return probability of a diffusive agent that is shown to yield finite density of active “oases" with an exponentially large contribution to the reactant population. The different range of applicability of these survival lower bounds to small systems is discussed.  相似文献   

15.
Second-order phase transitions in a non-equilibrium liquid-gas model with reversible mode couplings, i.e., model H for binary-fluid critical dynamics, are studied using dynamic field theory and the renormalization group. The system is driven out of equilibrium either by considering different values for the noise strengths in the Langevin equations describing the evolution of the dynamic variables (effectively placing these at different temperatures), or more generally by allowing for anisotropic noise strengths, i.e., by constraining the dynamics to be at different temperatures in d || - and d -dimensional subspaces, respectively. In the first, isotropic case, we find one infrared-stable and one unstable renormalization group fixed point. At the stable fixed point, detailed balance is dynamically restored, with the two noise strengths becoming asymptotically equal. The ensuing critical behavior is that of the standard equilibrium model H. At the novel unstable fixed point, the temperature ratio for the dynamic variables is renormalized to infinity, resulting in an effective decoupling between the two modes. We compute the critical exponents at this new fixed point to one-loop order. For model H with spatially anisotropic noise, we observe a critical softening only in the d -dimensional sector in wave vector space with lower noise temperature. The ensuing effective two-temperature model H does not have any stable fixed point in any physical dimension, at least to one-loop order. We obtain formal expressions for the novel critical exponents in a double expansion about the upper critical dimension d c = 4 - d || and with respect to d || , i.e., about the equilibrium theory. Received 4 April 2002 Published online 13 August 2002  相似文献   

16.
We consider two stochastic processes, the Gribov process and the general epidemic process, that describe the spreading of an infectious disease. In contrast to the usually assumed case of short-range infections that lead, at the critical point, to directed and isotropic percolation respectively, we consider long-range infections with a probability distribution decaying in d dimensions with the distance as . By means of Wilson's momentum shell renormalization-group recursion relations, the critical exponents characterizing the growing fractal clusters are calculated to first order in an -expansion. It is shown that the long-range critical behavior changes continuously to its short-range counterpart for a decay exponent of the infection . Received: 17 July 1998 / Revised: 20 July 1998 / Accepted: 28 July 1998  相似文献   

17.
We have studied the nucleation in the nearest neighbour ferromagnetic Ising model, in different (d) dimensions, by extensive Monte-Carlo simulation using the heat-bath dynamics. The nucleation time () has been studied as a function of the magnetic field (h) for various system sizes in different dimensions (d=2,3,4). The logarithm of the nucleation time is found to be proportional to the power (-(d-1)) of the magnetic field (h) in d dimensions. The size dependent crossover from coalescence to nucleation regime is observed in all dimensions. The distribution of metastable lifetimes are studied in both regions. The numerical results are compared and found to be consistent with the classical theoretical predictions. In two dimensions, we have also studied the dynamical response to a sinusoidally oscillating magnetic field. The reversal time is studied as a function of the inverse of the coercive field. The applicability of the classical nucleation theory to study the hysteresis and coercivity has been discussed. Received: 21 January 1998 / Accepted: 17 March 1998  相似文献   

18.
Shape-dependent universal crossing probabilities are studied, via Monte Carlo simulations, for bond and site directed percolation on the square lattice in the diagonal direction, at the percolation threshold. In a dynamical interpretation, the crossing probability is the probability that, on a system with size L, an epidemic spreading without immunization remains active at time t. Since the system is strongly anisotropic, the shape dependence in space-time enters through the effective aspect ratio r eff = ct/L z, where c is a non-universal constant and z the anisotropy exponent. A particular attention is paid to the influence of the initial state on the universal behaviour of the crossing probability. Using anisotropic finite-size scaling and generalizing a simple argument given by Aizenman for isotropic percolation, we also obtain the behaviour of the probability to find n incipient spanning clusters on a finite system at time t. The numerical results are in good agreement with the conjecture. Received 10 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: turban@lpm.u-nancy.fr RID="b" ID="b"UMR CNRS 7556  相似文献   

19.
An analytical method to compute the site percolation threshold is introduced. This method yields an approximate value of larger or equal to the real value. As examples, the computation of is presented for 4 lattices in 2 dimensions: square, triangular, honeycomb and kagome. The results obtained are 0.592 871 6, 0.5, 0.765 069, 0.654 653 7, to be compared with the real values 0.592 746 0, 0.5, 0.697 043, 0.652 703 6. The method is not limited to 2 dimensions. Received 27 July 1999 and Received in final form 29 November 1999  相似文献   

20.
A Bethe-Peierls treatment to dilution in frustrated magnets and spin liquids is given. A spin glass phase is present at low temperatures and close to the percolation point as soon as frustration takes a finite value in the dilute magnet model; the spin glass phase is reentrant inside the ferromagnetic phase. An extension of the model is given, in which the spin glass/ferromagnet phase boundary is shown not to reenter inside the ferromagnetic phase asymptotically close to the tricritical point whereas it has a turning point at lower temperatures. We conjecture similar phase diagrams to exist in finite dimensional models not constraint by a Nishimori's line. We increase frustration to study the effect of dilution in a spin liquid state. This provides a “minimal” ordering by disorder from an Ising paramagnet to an Ising spin glass. Received 9 April 1999 and Received in final form 27 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号