共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared (3500–40 cm −1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C 3H 6SiF(CH 3), have been recorded. Additionally, the Raman spectrum (3500–30 cm −1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm −1 (3.19±0.12 kJ mol −1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules. 相似文献
2.
The infrared (3500-80 cm −1) and Raman (3500-20 cm −1) spectra of 3-fluoro-1-butyne, CH 3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm −1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm −1 (4.12 ± 0.06 kcal mol −1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state. 相似文献
3.
The infrared (3500–30 cm −1) spectra of gaseous and solid and the Raman (3500–10 cm −1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH 2CH 2SiH 3, have been recorded. Similar data have been recorded for the Si–d 3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm −1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d 2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue. 相似文献
4.
The infrared spectra (3500–40 cm −1) of gaseous and solid and the Raman spectra (3500–30 cm −1) of liquid and solid 1-chlorosilacyclobutane, c-C 3H 6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm −1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules. 相似文献
5.
The far infrared spectrum from 370 to 50 cm −1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm −1. The fundamental O–H torsion of the more stable gauche ( Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm −1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm −1) and Tt (234 cm −1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm −1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm −1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm −1 (4.92±0.48 kJ/mol) for the Gg′/ Tt and 315±40 cm −1 (3.76±0.48 kJ/mol) for the Gg′/ Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers. 相似文献
6.
The infrared spectra (3500–50 cm −1) of the gas and solid and the Raman spectra (3500–50 cm −1) of the liquid and solid have been recorded for 2-hexyne, CH 3–CC–CH 2CH 2CH 3. Variable temperature studies of the infrared spectrum (3500–400 cm −1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/ gauche conformer pairs, the anti( trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm −1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH 3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules. 相似文献
7.
Gas-phase electron diffraction (ED), together with ab initio molecular orbital calculations, have been used to determine the structure and conformational composition of 1-chlorobutane, 1-bromobutane, and 1-iodobutane. These molecules may in principle exist as mixtures of five different conformers, but only three or four of these were observed in gas phase at temperatures of the ED experiments, 18C, 18C, and 23C, respectively. The observed conformational compositions (1-chlorobutane, 1-bromobutane, and 1-iodobutane) were AA (13 ± 12%, 21 ± 14%, 19 ± 17%), GA (60±13%, 33±32%, 17±31%), AG (12±16%, 8±12%, <1%), and GG (12 ±16%, 38± 34%, 64±31%). A and G denotes anti and gauche positions for the X-C 1-C 2-C 3 (X=Cl, Br, I), and the C 1-C 2-C 3-C 4 torsion angles. The results for the most important distances ( r
g) and angles ( ) from the combined ED/ab initio study for the GA conformer of 1-chlorobutane, with estimated 2 uncertainties, are r(C 1-C 2)=1.519(3)å, r (C 2-C 3)=1.530(3) å, r (C 3-C 4)=1.543(3) å, r (C 1-Cl)=1.800(4) å, <C 1C 2C 3=114.3(6), <C 2C 3C 4=112.0(6), <CCCl=112.3(5). The results for the GA conformer of 1-bromobutane are r (C 1-C 2)=1.513(4) å, r (C 2-C 3)=1.526(4) å, r (C 3-C 4)=1.540(4) å, r(C 1-Br)=1.959(8) å, <C 1C 2C 3=115.3(11), <C 2C 3C 4=112.8(11),<CCBr=112.1(14). The results for 1-chlorobutane and 1-bromobutane are compared with those from earlier electron diffraction investigations. The results for the GA conformer of 1-iodobutane are r (C 1-C 2)=1.506(5) å, r (C 2-C 3)=1.518(5) å, r (C 3-C 4)=1.535(5) å, r (C 1-I)=2.133(11) å, <C 1C 2C 3=116.8(15), <C 2C 3C 4=115.3(15), <CCI=110.2(14). Differences in length between the different C-H bonds in each molecule, between the different C-C bonds, between the different CCH angles, and between the different CCC angles were kept constant at the values obtained from the ab initio calculations. 相似文献
8.
The infrared (3500-50 cm −1) and Raman (3500-20 cm −1) spectra of 1,2-pentadiene, H 2C=C=C(H)CH 2CH 3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm −1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules. 相似文献
9.
The Raman (3500-30 cm −1) spectra of liquid and solid and the infrared (3500-40 cm −1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH 2C(CH 3)CH 2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm −1 (1.20±0.19 kJ mol −1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at 25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules. 相似文献
10.
The Raman (3200 to 10 cm –1) and infrared (3500 to 50 cm –1) spectra of vinyl chloroformate, H 2C=CHOC(O)Cl, have been recorded for both the gas and solid. Additionally, the Raman spectrum of the liquid has been recorded, and depolarization ratios have been obtained. These data have been interpreted on the basis that the only stable conformation present at ambient temperature is the trans-trans rotamer, where the first trans refers to the vinyl moiety relative to the O—CCl bond and the second to the C—Cl bond relative to the=C—O bond. Using harmonic rigid asymmetric top calculations, the infrared vapor phase contours for the C=O and the C=C stretch were predicted for the trans-trans and for the cis-trans conformer, and were compared with experiment. For both fundamentals the trans-trans hybrid reproduces the experimental contour, whereas the cis-trans contours fail to do so for both fundamentals. From far-infrared spectrum of the vapor obtained at 0.1 cm –1 resolution, the C(O)Cl and O-vinyl torsional fundamentals have been observed at 132 and 61 cm –1, respectively. The r
0 structural parameters have been obtained from a combination of ab initio calculated parameters with appropriate offset values and the fit of the microwave rotational constants for the two naturally occurring chlorine isotopes. The structure, barrier to internal rotation, and vibrational frequencies have been determined from ab initio Hartree-Fock gradient calculations, using the 3-21G * and 6-31G * basis sets. These results are compared to those obtained experimentally and to similar quantities for some related molecules. 相似文献
11.
Infrared spectra (4000–50 cm −1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm −1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH 3N(H)P(=S)F 2, and three deuterated species, CD 3N(H)P(=S)F 2, CH 3N(D)P(=S)F 2, and CD 3N(D)P(=S)F 2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near- cis conformers was determined to be 368±15 cm −1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near- trans (5° from trans) and near- cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near- trans conformer is predicted to be the more stable form by 451 cm −1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm −1 (4.63 kJ/mol). All of the normal modes of the near- trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations. 相似文献
12.
The infrared and Raman spectrum of 1-bromo-3-fluoropropane is reported in the gas, liquid, amorphous solid and annealed polycrystalline states. Only one of the five possible conformers is stable in the crystal, designated the C conformer. The disordered phases show the presence of several other conformers of higher energy, due entirely to conformers designated B and D. Ab initio calculations were performed as rhf/4-31g*/MIDI-4*, rhf/6-31g* and mp2/6-31g* (both frozen core and full electron correlation) for all five conformers. The scaled harmonic force field obtained using the mp2 = full/6-31g* level of the theory is reported for the most stable conformer together with an assignment of fundamentals and potential energy distributions for local symmetry coordinates. Selected computational results are reported for all conformers together with scaled and unscaled wavenumbers and infrared and Raman intensities. The temperature dependent Raman spectrum is reported from room temperature to -100 degrees C. Only three of the five possible conformers can be identified in this spectrum, and there is no evidence of the other two. The energy differences between conformers in the liquid phase were found experimentally to be 132+/-27, 232+/-46 and 106+/-30 cm(-1), respectively between the D and C, B and C and D and B conformers. These differences are substantially less than the differences calculated ab initio at the highest level of the theory used, suggesting that energy differences were decreased by large dipole-dipole interactions present in the liquid but not in the gas. 相似文献
13.
The microwave spectrum of gaseous 1-bromo-2-methoxyethane, BrCH 2CH 2OCH 3, has been recorded from 18.0 to 27.0 GHz at low resolution. The Raman spectra of the gas, liquid, and solid along with the infrared spectra of the gas and solid have been recorded from 3500 to 50 cm –1. A comparison of the vibrational spectra obtained for the fluid phases with those obtained for the annealed solid indicates the presence of more than one conformer in the fluid phases. The presence of two asymmetric rotors allows for five possible conformations, a majority of which are present in the gaseous phase. It is concluded that the conformation present in the solid phase is that of the gauche/trans (GT) form, where the first term refers to the carbon-bromine bond and the second term to the carbon-oxygen bond (methoxy group). In the gas phase the major absorption in the microwave spectrum is a result of the trans/trans (TT) form although it is certain that other conformations are also present. From a variable temperature study of the Raman spectrum of the liquid, the enthalpy difference between the conformers of the—OCH 3 group was found to be 850 ±115 cm –1 (2.43±0.33 kcal/mol) whereas the difference between the conformers of the—CH 2Br group as found to be 510±24cm –1 (1.46±0.07 kcal/mol). The conformational energy differences, vibrational frequencies, and structural parameters have been obtained from ab initio calculations with the STO-3G * basis set, and these theoretical values are compared to the experimental values. All of these results are compared to similar data for some corresponding molecules.Taken in part from the thesis of R. A. Larsen which was submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree. 相似文献
14.
The infrared spectra (3500-50 cm-1) of gas and solid and the Raman spectrum (3500-50 cm-1) of liquid 2-fluorobutane, CH3CHFCH2CH3, have been recorded. Variable temperature studies over the range -105 to -150 degrees C of the infrared spectra (3500-400 cm-1) of the sample dissolved in liquid krypton have also been recorded. By utilizing the relative intensities of six conformer pairs each for both Me-trans/F-trans and Me-trans/H-trans, the Me-trans conformer is found to be the lowest energy form with an enthalpy difference to the F-trans conformer of 102 +/- 10 cm-1 ( 1.21+/- 0.12 kJmol-1) whereas the H-trans conformer is the highest energy form with an enthalpy difference of 208 +/- 21 cm-1 ( 2.49 +/- 0.25 kJmol-1) higher than the Me-trans form. At ambient temperature, it is estimated that there is 50 +/- 2% of the Me-trans form, 31 +/- 1% of the F-trans form, and 19 +/- 1% of the H-trans conformer present. Equilibrium geometries and total energies of the three conformers have been determined by ab initio calculations with full electron correlation by the perturbation method to second order using a number of basis sets. A complete vibrational assignment is proposed for the Me-trans conformer and many of the fundamentals have been identified for the other two forms based on the force constants, relative infrared and Raman intensities, and depolarization ratios obtained from MP2/6-31Gd ab initio calculations. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules. 相似文献
15.
The infrared spectra of 3-pentyn-2-ol, CH 3CCCH(OH)CH 3, have been recorded as a vapour and liquid at ambient temperature, as a solid at 78 K in the 4000–50 cm −1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of the solid phase at 78 K were obtained before and after annealing to temperatures of 120 and 130 K. The IR spectra of the solid were quite similar to that of the liquid. Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, some bands changed in relative intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer in which OH is oriented anti to C1(aMe). From various bands assigned to a second conformer in which OH is oriented anti to Hgem(aH), the conformational enthalpy differences was found to be between 0.4 and 0.8 kJ mol−1. The highest energy conformer with OH anti to C3(aC) was not detected. Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. Except for small basis set calculations for which the aH conformer had slightly lower energy, all the calculations revealed that aMe was the low energy conformer. The B3LYP/cc-pVTZ calculations suggested the aMe conformer as more stable by 0.8 and 8.3 kJ mol−1 relative to aH an aC, respectively. Vibrational wavenumbers and infrared and Raman band intensities for two of the three conformers are reported from B3LYP/cc-pVTZ calculations. 相似文献
16.
The infrared spectra of meso-2,4-pentanediol and racemic-2,4-pentanediol were measured in an argon matrix at 20 K. The Raman spectra of the pure liquids (meso and racemic) were measured at room temperature. The spectra were obtained using a Fourier transform spectrophotometer and a cryostat for the low temperature matrix. The meso and racemic forms of the diol were separated by means of a spinning band distillation column. The energies of nine possible conformers of the meso form and nine conformers of the racemic form were calculated. Extensive ab initio calculations using B3LYP, MP2 and HF methods with several basis sets consistently gave the lowest energy for the TT conformer of the meso form and the G−T (= TG−) conformer of the racemic form. Ab initio calculations at the B3LYP/6-31G** level were performed for the lowest energy conformer of meso and racemic pentanediol to obtain the equilibrium geometry, vibrational frequencies, and infrared and Raman intensities. Calculated and experimental frequencies were compared to make vibrational assignments. 相似文献
17.
The infrared spectra (4000–50 cm −1) of gaseous and solid divinylmethoxyborane, (CH 2=CH) 2BOCH 3, as well as the Raman spectra (3500–20 cm −1) of the liquid and solid have been recorded. Qualitative depolarization values have been obtained from the Raman spectrum of the liquid. All normal modes, except the torsions, have been assigned based on infrared band contours, depolarization values, group frequencies, and normal coordinate calculations. From a comparison of the spectra in the fluid and solid states, it is concluded that the molecule exists predominantly in a single conformation in all physical states. Frequencies and potential energy distributions for the normal modes have been calculated with the 3–21G basis set. A comparison of these calculated frequencies to the observed spectra is consistent with the predominant form having a “planar” heavy atom skeleton with Cs, symmetry. From the variable low temperature 13C NMR data, a barrier to rotation about the B-O bond of 10.1 ± 0.1 kcal mol −1 has been determined, which is in excellent agreement with a barrier of 8.5 kcal mol"1 obtained from ab initio calculations. Structural parameters, conformational stability, and barriers to internal rotation have been obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21G and 6–31G * basis sets. The results are compared to the corresponding data for some similar organoboranes. 相似文献
18.
Infrared and Raman spectra (3500-60 cm(-1)) of gas and/or liquid and solid 1-bromo-1-silacyclopentane (c-C4H8SiBrH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/6-311+G(2df,2pd) predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but approximately 900 cm(-1) (5.98 kJ/mol) lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predict slightly lower energies for the two envelope forms and considerably lower energy for the planar form compared to the MP2 predictions. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings. 相似文献
19.
The microwave spectrum of trans-1-fluoro-2-butene, trans-(CH 3)HCCH(CH 2F), has been recorded in the region of 18.0–39.0 GHz. Both a-type R- and b-type Q-branch assignments have been made for the ground and first two vibrationally excited states of the asymmetric torsion for the gauche (anticlinal) conformer. The ground state rotational constants for this conformer are found to have the following values: A = 19,938.33±0.48, B = 2071.37±0.01, C = 2022.17±0.01 MHz. From an analysis of the internal rotational splittings of the Q-branches, the three-fold rotational barrier for the methyl group is determined to be 596±7 cm −1 (1.70±0.02 kcal/mol). From the Stark effect the dipole moment components for the gauche conformer were determined to be |μ a| = 1.86±0.01, |μ b| = 1.16±0.01, |μ c| = 0.31±0.05, and |μ t = 2.21±0.01 D. The fundamental asymmetric torsion for the cis (synclinal) conformer has been observed in the far-IR spectrum of the vapor at 123.95 cm −1 whereas that for the gauche conformer has been determined to occur at 82.8±5 cm −1 based on relative intensity measurements obtained from the microwave spectrum. From these data the potential function which governs the internal rotation of the asymmetric top has been determined and the following potential constants have been evaluated: V1 = −191±10, V2 = 598±10, V3 = 786±13, V4 = 59±5, and V6 = 79±5 cm −1. These data are consistent with the more stable conformer having the fluorine atom cis (synclinal) to the double bond and lying 300±33 cm −1 (858±94 cal/mol) lower in energy than the gauche rotamer. Utilizing ab initio calculations with the MP2/6-31G* basis set and the three rotational constants, r0 structural parameters are estimated. Also, the barriers to conformer interconversion have been calculated with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. All of these results have been compared to the similar quantities of some corresponding molecules. 相似文献
20.
The microwave spectrum of cyclobutylisocyanate, c-C 4H 7NCO, has been investigated from 21,000 to 11,000 MHz and 11 transitions for the more stable equatorial- trans conformer were assigned. The rotational constants of the ground vibrational state have been determined and the molecule has been shown to be a near symmetric prolate rotor (К = ?0.99). The B and C rotational constants have been confidently determined to be B = 1508.68(3) and C = 1476.55(2) MHz, respectively, whereas the value for the A rotational constant of 6,891(302) MHz had a large uncertainty. Variable temperature (?100 to ?55 °C) studies of the infrared spectra (3,500–400 cm ?1) of cyclobutylisocyanate dissolved in liquid xenon as well as the infrared spectra of the gas and solid have been recorded. In addition, the Raman spectra (3,600–100 cm ?1) of the liquid have been investigated. These spectral data indicated the present of three conformers in the fluid states which are the equatorial- trans, equatorial- gauche, and axial- trans forms. The second part of the conformational name refers to the relative position of the NCO moiety relative to the alpha hydrogen. By utilizing four conformer pairs, an enthalpy difference of 131 ± 13 cm ?1 (1.57 ± 0.16 kJ/mol) was obtained with the equatorial- trans conformer the more stable form, which is in good agreement with the ab initio predicted value of 137 ± 36 cm ?1 (1.64 ± 0.43 kJ/mol). To aid in the vibrational assignment, ab initio and DFT calculations have been carried out by using a variety of basis sets up to 6-311G(3df,3pd). 相似文献
|