首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen L  Ren J  Bi R  Chen D 《Electrophoresis》2004,25(6):914-921
Simple sealing methods for poly(dimethylsiloxane) (PDMS)/glass-based capillary electrophoresis (CE) microchips by UV irradiation are described. Further, we examined the possibility to modify the inner surface of separation channels, using polymethylacrylamide (PDMA) as a dynamic coating reagent. The surface properties of native PDMS, UV-irradiated PDMS, and PDMA-coated PDMS were systematically studied by atomic force microscopy (AFM), infrared absorption by attenuated total reflection infrared (ATR-IR) spectroscopy, and contact angle measurement. We found that PDMA forms a stable coating on PDMS and glass surfaces, eliminating the nonhomogeneous electroosmotic flow (EOF) in channels on PDMS/glass microchips, and improving the hydrophilicity of PDMS surfaces. Mixtures of flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and fluorescein were separated in 35 s using PDMA-coated PDMS/glass microchips. A high efficiency of theoretical plates with at least 1365 (105 000 N/m) and a good reproducibility with relative standard deviations (RSD) below 4% in five successive separations were achieved.  相似文献   

2.
The Flory Huggins Solvent parameter (χ) previously published for a range of solvents and a cross-linked silicone polymer, have been recalculated using the original swelling data, but including a term representing the loss of configurational entropy consequent on crosslinking. From the Shore hardness of the polymer, the Young’s modulus E was calculated. E = 6(C1 + C2), where C1 and C2 are the parameters from the Mooney Rivlin equation for the elastic deformation of an elastomer. Since C1 is related to Mc, the average molecular weight between crosslinks, revised χ values could be calculated for various values of C2/C1. These showed that for good solvents for the silicone polymer, the values published previously were too high.  相似文献   

3.
Wu D  Luo Y  Zhou X  Dai Z  Lin B 《Electrophoresis》2005,26(1):211-218
A poly(dimethylsiloxane) (PDMS) microfluidic chip surface was modified by multilayer-adsorbed and heat-immobilized poly(vinyl alcohol) (PVA) after oxygen plasma treatment. The reflection absorption infrared spectrum (RAIRS) showed that 88% hydrolyzed PVA adsorbed more strongly than 100% hydrolyzed one on the oxygen plasma-pretreated PDMS surface, and they all had little adsorption on original PDMS surface. Repeating the coating procedure three times was found to produce the most robust and effective coating. PVA coating converted the original PDMS surface from a hydrophobic one into a hydrophilic surface, and suppressed electroosmotic flow (EOF) in the range of pH 3-11. More than 1,000,000 plates/m and baseline resolution were obtained for separation of fluorescently labeled basic proteins (lysozyme, ribonuclease B). Fluorescently labeled acidic proteins (bovine serum albumin, beta-lactoglobulin) and fragments of dsDNA phiX174 RF/HaeIII were also separated satisfactorily in the three-layer 88% PVA-coated PDMS microchip. Good separation of basic proteins was obtained for about 70 consecutive runs.  相似文献   

4.
Experimentally-determined permeation transients do not support the view that the behaviour of water in PDMS is significantly influenced by statistical-mechanical clustering; rather, they suggest that water behaves in a straightforward way. Simple calculations appear to confirm that the incidence of the statistical clustering of water in the polymer is negligible. A diffusion coefficient derived to include the influence of hydrophilic sites within the polymer is partially successful in mathematically reproducing measured quantities. An entropy calculation appears to suggest that the amount of mobile water in PDMS is solely thermally determined; hence the reduction of supposed hydrophilic impurities would probably not lead to a reduction in water permeation. The apparently large difference between the water solubility in PDMS, and that in siloxane liquids, a point of some interest in separation processes, remains unexplained in this paper.  相似文献   

5.
A novel covalent strategy was developed to modify the poly(dimethylsiloxane) (PDMS) surface. Briefly, dextran was selectively oxidized to aldehyde groups with sodium periodate and subsequently grafted onto amine-functionalized PDMS surface via Schiff base reaction. As expected, the coated PDMS surface efficiently prevented the biomolecules from adsorption. Electro-osmotic flow (EOF) was successfully suppressed compared with that on the native PDMS microchip. Moreover, the stability of EOF was greatly enhanced and the hydrophilicity of PDMS surface was also improved. To apply thus-coated microchip, the separation of peptides, protein and neurotransmitters was investigated in detail. For comparison, these analytes were also measured on the native PDMS microchips. The results demonstrated that these analytes were efficiently separated and detected on the coated PDMS microchips. Furthermore, the relative standard deviations of their migration times for run-to-run, day-to-day, and chip-to-chip reproducibilities were in the range of 0.6-2.7%. In addition, the coated PDMS microchips showed good stability within 1 month.  相似文献   

6.
Dou YH  Bao N  Xu JJ  Meng F  Chen HY 《Electrophoresis》2004,25(17):3024-3031
Separation and detection of proteins have been realized on nonionic surfactant-modified poly(dimethylsiloxane) (PDMS) microfabricated devices with end-column amperometric detection. The hydrophobic PDMS channels are turned into hydrophilic ones after being modified with Brij35 and facilitate the separation of proteins. The coating can remarkably reduce the adsorption of large protein molecules and is stable in the range of pH 6-12. The detection of proteins in such channels needs less rinsing time and thus efficiency is raised. Even large molecules of proteins can also be detected with better reproducibility and enhanced plate numbers. The relative standard deviation (RSD) of the migration time for glucose oxidase (GOD) is 2.2% (n = 19). Separation of GOD and myoglobin has been developed in modified channels. Predominant operational variables, such as the coating conditions, the concentration of surfactant and buffer, are studied in detail.  相似文献   

7.
A series of poly(dimethylsiloxane)-zinc oxide (PDMS-ZnO) nanocomposites having different concentrations of ZnO nanoparticles (0, 1, 5, 10 and 20 wt%) have been prepared. Raman and FTIR-ATR spectroscopic analysis was performed in order to determine the interaction between the ZnO nanoparticles and PDMS polymer matrix. Density functional theory (DFT) using the (B3-LYP)/6-311++G(2df,2p) method was used to investigate the vibrational spectra of PDMS. A complete vibrational assignment is supported by the normal coordinate analysis, calculated Raman activities as well as IR intensities.The presence of ZnO nanoparticles in PDMS gives rise to significant differences in relative intensities of the characteristic vibrational bands with respect to the cross-linked polymer. The changes in relative intensities of Raman bands, as well as swelling measurements, were used to explain the effect of ZnO nanoparticles on the cross-linked structure of PDMS nanocomposites. It is established that ZnO nanoparticles influence the cross-linking density of the polymer matrix.  相似文献   

8.
An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.  相似文献   

9.
A mixture of five amino acids including arginine, histidine, phenylalanine, serine and glutamic acid was successfully separated in microchip capillary electrophoresis and detected with laser-induced fluorescence (LIF) detector. These amino acids were labeled with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein (DTAF). The analyses were performed on two kinds of modified poly(dimethylsiloxane) (PDMS) microchips. One kind of chip was simply treated with oxygen plasma (OP-chip), and the other was further modified by coating double layers of non-ionic polymer poly(vinyl alcohol) (PVA) after plasma oxidization (PVA-chip). The derivatization condition of amino acids by DTAF was optimized. The properties of the two modified PDMS microchips were studied and separation conditions, such as the buffer pH, buffer concentration and separation voltage, were also optimized. The column efficiencies of the two microchips were in the range of 193,000–1,370,000 plates/m. The DTAF-labeled amino acids were sufficiently separated within 50 s and 90 s in 2.5 cm channels on OP-chip and PVA-chip, respectively.  相似文献   

10.
Surface plasmon resonance (SPR) spectroscopy is utilized to study in real-time and, by label-free means, the reversible and quasi-irreversible adsorption of small ionic or neutral molecules, pharmaceuticals, and proteins on poly(dimethylsiloxane) (PDMS) surfaces. The SPR sensor is covered with 0.2% (w/v) PDMS in octane. During the timescale of a typical lab-on-a-chip analysis or an electrophoretic separation, it was found that small neutral components containing a hydrophobic part do not adsorb or absorb onto PDMS, while larger, water-soluble polymer-like materials like proteins generally irreversibly adsorb to PDMS. The technique can be used to monitor the kinetics of adsorption and desorption of the molecules. For the non-specific adsorption of teicoplanin to PDMS, a Langmuir-like adsorption isotherm was obtained (Kd = 32 ± 2 μmol L−1).  相似文献   

11.
Kang J  Yan J  Liu J  Qiu H  Yin XB  Yang X  Wang E 《Talanta》2005,66(4):1018-1024
In this paper a method was described about dynamic coating for resolving rhodamine B (RB) adsorption on a hybrid poly(dimethylsiloxane) (PDMS)/glass chip. The results showed that when the non-ionic surfactant Triton X-100 was higher than 0.5% (v/v) into the phosphate buffer, the adsorption of RB appeared. Besides, some separation conditions for RB were investigated, including concentration of Triton X-100, concentration and pH value of running buffer, separation voltage and detection site. Through comparing electroosmotic flow, plate numbers and other parameters, an acceptable separation condition was obtained. Under optimized conditions, the precisions of RB detection (R.S.D., n = 10) were 2.62% for migration time, 4.78% for peak height respectively. Additionally, RB concentration linearity response was excellent with 0.9996 of correlation coefficient between 1 and 100 μM, and a limit of detection (S/N = 3) was 0.2 μM. Finally, we separated rhodamine B isothiocyanate and lysine deriving from the fluorescent probe, and the result displayed that the dynamic coating method was applicable by CE separations using PDMS/glass chip.  相似文献   

12.
The permeation and separation characteristics of volatile organic compounds (VOCs), such as chloroform, benzene, and toluene, from water by pervaporation through cross-linked poly(dimethylsiloxane) membranes prepared from poly(dimethylsiloxane) dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl compounds, such as ethylene glycol dimethylmethacrylate (EGDM), divinyl benzene (DVB), divinyl siloxane (DVS), and divinyl perfluoro-n-hexane (DVF) are described. When aqueous solutions containing 0.05 wt.% VOCs were permeated through cross-linked PDMSDMMA membranes, these membranes showed high VOC/water selectivity and permeability. Both VOC/water selectivity and permeability were affected significantly by the divinyl compound. Furthermore cross-linked PDMSDMMA membranes showed the highest chloroform/water selectivity. The VOC/water selectivity was mainly governed by the sorption selectivity rather than the diffusion selectivity. However, the difference in the selectivity between different types of VOCs depended on differences in the diffusivity of permeants. With increasing downstream pressure, the VOC/water selectivity of all cross-linked PDMSDMMA membranes increased, but the permeability decreased. A PDMSDMMA–DVF membrane exhibited a normalized permeation rate of 1.9 × 10−5 kg m/m2 h and a separation factor for chloroform/water of 4850, yielding a separation index of 9110. The pervaporation characteristics of the cross-linked PDMSDMMA membranes are discussed based on their chemical and physical structures as well as the chemical and physical properties of the permeants.  相似文献   

13.
An electroosmotic flow (EOF)-switchable poly(dimethylsiloxane) (PDMS) microfluidic channel modified with cysteine has been developed. The native PDMS channel was coated with poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles by layer-by-layer technique was assembled on PDDA to immobilize cysteine. The assembly was followed by infrared spectroscopy/attenuated total reflection method, contact angle, EOF measurements and electrophoretic separation methods. EOF of this channel can be reversibly switched by varying the pH of running buffer. At low pH, the surface of channels is positively charged, EOF is from cathode to anode. At high pH, the surface is negatively charged, EOF is from anode to cathode. At pH 5.0, near the isoelectric point of the chemisorbed cysteine, the surfaces of channels show neutral. When pH is above 6.0 or below 4.0, the magnitude of EOF varies in a narrow range. And the modified channel surface displayed high reproducibility and good stability, a good reversibility of cathodic-anodic EOF transition under the different pH conditions was observed. Separation of dopamine and epinephrine as well as arginine and histidine were performed on the modified chip.  相似文献   

14.
Chemical homogeneous poly(dimethylsiloxane) (PDMS) surface with dot-like protrusion pattern was used to investigate the individual effect of surface microtopography on protein adsorption and subsequent biological responses. Fibrinogen (Fg) and fibronectin (Fn) were chosen as model proteins due to their effect on platelet and cell adhesion, respectively. Fg labeled with 125I and fluorescein isothiocyanate (FITC) was used to study its adsorption on flat and patterned surfaces. Patterned surface has a 46% increase in the adsorption of Fg when compared with flat surface. However, the surface area of the patterned surface was only 8% larger than that of the flat surface. Therefore, the increase in the surface area was not the only factor responsible for the increase in protein adsorption. Clear fluorescent pattern was visualized on patterned surface, indicating that adsorbed Fg regularly distributed and adsorbed most on the flanks and valleys of the protrusions. Such distribution and local enrichment of Fg presumably caused the specific location of platelets adhered from platelet-rich plasma (PRP) and flowing whole blood (FWB) on patterned surface. Furthermore, the different combination of surface topography and pre-adsorbed Fn could influence the adhesion of L929 cells. The flat surface with pre-adsorbed Fn was the optimum substrate while the virgin patterned surface was the poor substrate in terms of L929 cells spread.  相似文献   

15.
PDMS微流体系统的加工制作   总被引:1,自引:0,他引:1  
目前,微流体装置越来越多地应用到分析系统、生物医学、化学等基础研究领域。传统的微流体系统制作方法是对玻璃和硅片进行刻蚀。用软刻法制作PDMS(Poly(dimethylsiloxane):聚二甲基硅氧烷)微流体装置比传统的制作方法更快速,成本更低廉,并且对于通道的密封也不需要玻璃或硅芯片键合密封等复杂工艺。这类软刻法的核心技术是快速原样制作法和复制压模技术。相对于微电子加工工艺,软刻法制作过程不需要超静环境,化学家和生物学家可在普通的实验室实现加工制作。本文介绍了PDMS微装置在分离和生物材料模式化等方面的应用。  相似文献   

16.
聚二甲基硅氧烷基质微流控芯片封接技术的研究   总被引:12,自引:0,他引:12  
考察了聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)预聚体与固化剂间的配比、固化温度及固化时间对PDMS芯片封接强度的影响,得出PDMS芯片封接的最佳条件基片和盖片所用PDMS预聚体与固化剂质量配比分别为10∶1与5∶1,固化温度为75℃,固化时间分别为35~50min和25~40min,封接后继续加热60min.在该条件下封接制作的微芯片历经半年50多次的分析、冲洗及抽液后未见明显损坏,足以满足一般分析任务的要求,并将芯片成功用于两种氨基酸的快速毛细管电泳分离.  相似文献   

17.
Wang AJ  Xu JJ  Zhang Q  Chen HY 《Talanta》2006,69(1):210-215
Poly(dimethylsiloxane) (PDMS) microfluidic channels modified by citrate-stabilized gold nanoparticles after coating a layer of linear polyethylenimine (LPEI) were successfully used to separate dopamine and epinephrine, which were difficult to be separated from baseline in native and hybrid PDMS microchannels. In-channel amperometric detection with a single carbon fibre cylindrical electrode was employed. Experimental parameters of separation and detection processes were optimized in detail. The analytes were well separated within 100 s in a 3.7 cm long separation channel at a separation voltage of +800 V using a 30 mM phosphate buffer solution (PBS, pH 7.0). Linear responses of them were obtained both from 25 to 600 μM with detection limits of 2 μM for dopamine and 5 μM for epinephrine, respectively. The modified PDMS channels have a long-term stability and an excellent reproducibility within 2 weeks.  相似文献   

18.
电泳微芯片由于具有自动化程度高、试剂消耗少和分析速度快等优点,目前已经成为微全分析系统研究的热点.  相似文献   

19.
In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows.  相似文献   

20.
Microfluidics based on the capillarity-induced filling of elastomeric channels by a suitable liquid or solution represents a useful route for realizing portable diagnostic devices designed without additional mechanical or electrical micropumps. In this study, an elastomeric mold made of poly(dimethylsiloxane) (PDMS), containing relief patterns placed in intimate contact with a silicon substrate, is utilized to create a continuous network of rectangular micro-channels for the motion of water fluid. The immobilization on activated PDMS surface of suitable functional molecules such as hydrophilic and hydrophobic fluorine-containing aminonaphthols, obtained through a straightforward and versatile synthetic procedure, allowed us to modulate PDMS surface properties depending on the structural characteristics of the employed derivative. In this context, the incorporation of fluorine groups is important for improving biocompatibility of the resulting device, providing surfaces that could be chemically and biologically inert as well as resistant to surface adhesion phenomena. The functionalization from liquid phase of PDMS replicas, involving a covalent derivatization via silanization reaction of the above mentioned compounds to an oxidized PDMS surface, resulted in a successful modification of microfluidic motion of water in rectangular capillaries, moreover contact angle values evidence also how wettability of PDMS films could be modulated, with the fluorinated aminonaphthols fuctionalized PDMS exhibiting higher contact angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号