共查询到3条相似文献,搜索用时 0 毫秒
1.
《Electroanalysis》2006,18(2):141-151
Molecular diagnostics of inherited neurodegenerative disorders such as fragile X syndrome, myotonic dystrophy or Friedreich ataxia (FRDA) is based on analysis of the length of trinucleotide repetitive sequences in certain loci of genomic DNA. The current methods employ PCR and electrophoretic determination of the amplified DNA fragment size. We have recently shown that length of a triplet repetitive DNA sequence can be determined using a double‐surface electrochemical technique involving multiple hybridization of the expanded triplet repeat with short labeled reporter probe (spanning several trinucleotides). Here we propose a single‐surface sensor employing an analogous principle. Target DNA (tDNA) is adsorbed onto surface of a carbon (pyrolytic graphite or screen‐printed) electrode. Biotin‐labeled reporter probe (RP) is hybridized with the immobilized tDNA followed by binding of streptavidin‐alkaline phosphatase (ALP) conjugate. The ALP catalyzes production of an electroactive indicator (1‐naphthol) which is detected voltammetrically on the same electrode. Signal resulting from this electrochemical enzyme‐linked DNA hybridization assay is normalized to the amount of tDNA immobilized at the transducer surface either by measuring intrinsic tDNA voltammetric response, or using electrochemical labeling of the tDNA with osmium tetroxide 2,2′‐bipyridine complex. Detection of (GAA)n?(TTC)n triplet repeat expansion in nanogram quantities of PCR‐amplified tDNAs, including amplicons of patients' genomic DNA, is demonstrated. We show that our technique allow differentiation between normal and pathological alleles of X25 gene related to the FRDA. 相似文献
2.
We report an easy method to tune up screen‐printed carbon electrodes (SPCEs) for application in fabricating disposable electrochemical sensors. Simply by ultrasonic polishing a bare SPCE in a γ‐Al2O3 slurry, the surface roughness was drastically smoothed coupled with a large increase in hydrophilicity. The as‐generated micromorphology on the surface of the SPCE was found to be ideal for the immobilization of catechol to minimize the overpotential in the sensitive detection of nicotinamide adenine dinucleotide (NADH) and hydrazine. Physical characterization by both XPS and AFM studies specify that the adsorption behavior is related to the carbon surface functionalities and the trapping of γ‐Al2O3 on the polished‐SPCE. 相似文献
3.
Wei Sun Yuanyuan Zhang Anhui Hu Yongxi Lu Fan Shi Bingxin Lei Zhenfan Sun 《Electroanalysis》2013,25(6):1417-1424
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results. 相似文献