首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an effort to develop therapeutics for cancer treatments, a number of effective histone deacetylase inhibitors with structural diversity have been discovered. To gain insight into optimizing the activity of an identified lead compound, a computational protocol sequentially involving homology modeling, docking experiments, molecular dynamics simulation, and free energy perturbation calculations was applied for rationalizing the relative activities of known histone deacetylase inhibitors. With the newly developed force field parameters for the coordination environment of the catalytic zinc ion in hand, the computational strategy proved to be successful in predicting the rank orders for 12 derivatives of three hydroxamate-based inhibitor scaffolds with indole amide, pyrrole, and sulfonamide moieties. The results showed that the free energy of an inhibitor in aqueous solution should be an important factor in determining the binding free energy. Hence, in order to enhance the inhibitory activity by adding or substituting a chemical group, the increased stabilization in solution due to the structural changes must be overcome by a stronger enzyme-inhibitor interaction. It was also found that to optimize inhibitor potency, the hydrophobic head of an inhibitor should be elongated or enlarged so that it can interact with Pro29 and His28 that are components of the flexible loop at the top of the active site.  相似文献   

2.
3.
The conversion of nitric oxide (NO) into nitrate (NO3?) by dioxygenation protects cells from lethal NO. Starting from NO‐bound heme, the first step in converting NO into benign NO3? is the ligand exchange reaction FeNO+O2→FeO2+NO, which is still poorly understood at a molecular level. For wild‐type (WT) truncated hemoglobin N (trHbN) and its Y33A mutant, the calculated barriers for the exchange reaction differ by 1.5 kcal mol?1, compared with 1.7 kcal mol?1 from experiment. It is directly confirmed that the ligand exchange reaction is rate‐limiting in trHbN and that entropic contributions account for 75 % of the difference between the WT and the mutant. Residues Tyr 33, Phe 46, Val 80, His 81, and Gln 82 surrounding the active site are expected to control the reaction path. By comparison with electronic structure calculations, the transition state separating the two ligand‐bound states was assigned to a 2A state.  相似文献   

4.
A recent method for estimating ligand binding affinities is extended. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. This type of method may be useful for computational prediction of ligand binding strengths, e.g., in drug design applications.  相似文献   

5.
The core histones, H2A, H2B, H3 and H4, undergo post‐translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono‐, di‐ and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high‐performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom‐up liquid chromatography‐mass spectrometric analysis. The deuteroacetylation of unmodified or mono‐methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification ‘cross‐talk’ by correlating different PTMs on the same histone tail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We describe the development of force field parameters for methylated lysines and arginines, and acetylated lysine for the CHARMM all‐atom force field. We also describe a CHARMM united‐atom force field for modified sidechains suitable for use with fragment‐based docking methods. The development of these parameters is based on results of ab initio quantum mechanics calculations of model compounds with subsequent refinement and validation by molecular mechanics and molecular dynamics simulations. The united‐atom parameters are tested by fragment docking to target proteins using the MCSS procedure. The all‐atom force field is validated by molecular dynamics simulations of multiple experimental structures. In both sets of calculations, the computational predictions using the force field were compared to the corresponding experimental structures. We show that the parameters yield an accurate reproduction of experimental structures. Together with the existing CHARMM force field, these parameters will enable the general modeling of post‐translational modifications of histone tails. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

7.
8.
FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as Toxoplasma gondii, in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells. Here, we show that this property can be extended to the crossing of the Toxoplasma gondii cystic cell wall and the cell membrane of the parasite in its bradyzoite form, while maintaining a high efficacy as a histone deacetylase inhibitor. The investigation by molecular modeling allows a better understanding of the penetration mechanism.  相似文献   

9.
10.
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.  相似文献   

11.
Modification of proton conductive channels (PCCs) in Nafion has been achieved with the assistance of 3, 4‐dimethylbenzaldehyde (DMBA). During annealing, ionic clusters develop from small isolated spheres (1.72 nm) to wide continuous channels (5.15 nm), and the crystallinity of Nafion/DMBA membranes is also improved from 17% to 32% as shown by X‐ray diffraction. Molecular dynamic simulation reveals that hydrogen bonding and hydrophobic interaction between DMBA and Nafion work synergistically to achieve better phase separation. The morphology–property relationship shows that, versus various PCCs width, the corresponding proton conductivities vary greatly from 0.079 to 0.139 S/cm at 80 °C. By carefully tuning the width of PCCs, the proton conductivity shows an improvement of 22–34% as compared with pristine Nafion. A significant enhancement on the maximum power density is achieved for the membrane electrode assembly on Nafion/DMBA‐8h (as high as 1018 mW/cm?2), yielding an enhancement of 39% on pristine Nafion‐8h (730 mW/cm?2). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 52, 1107–1117  相似文献   

12.
The biochemical functions of proteins are activated at the protein glass transition temperature, which has been proposed to be dependent upon protein-water interactions. However, at the molecular level it is unclear how ligand binding to well-defined binding sites can influence this transition temperature. We thus report molecular dynamics (MD) simulations of the ϵ subunit from thermophilic Bacillus PS3 in the ATP-free and ligand-bound states over a range of temperatures from 20 to 300 K, to study the influence of ligand association upon the transition temperature. We also measure the protein mean square displacement (MSD) in each state, which is well established as a means to quantify this dynamical temperature dependence. We find that the transition temperature is largely unaffected by ligand association, but the MSD beyond the transition temperature increases more rapidly in the ATP-free state. Our data suggests that ligands can effectively “shield” a binding site from solvent, and hence stabilize protein domains with increasing temperature.  相似文献   

13.
14.
15.
Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings.  相似文献   

16.
Carotenoids are isoprenoid pigments, and sources of vitamin A in humans. The first metabolic pathway for their synthesis is mediated by the enzymes β,β-carotene-15,15′-dioxygenase (BCO1) and β,β-carotene-9′,10′-dioxygenase (BCO2), which cleave carotenoids into smaller compounds, called apocarotenoids. The objective of this study is to gain insight into the interaction of BCO1 and BCO2 with carotenoids, adding structural diversity and importance in the agro-food and/or health sectors. Homology modeling of BCO1 and BCO2, and the molecular dynamics of complexes with all carotenoids were performed. Interaction energy and structures were analyzed. For both enzymes, the general structure is conserved with a seven beta-sheet structure, and the β-carotene is positioned at an optimal distance from the catalytic center. Fe2+ forms in an octahedral coordination sphere with four perfectly conserved histidine residues. BCO1 finds stability in a structure in which the β-carotene is positioned ready for enzymatic catalysis at the 15–15′ bond, and BCO2 in positioning the bond to be cleaved (C9–C10) close to the active site. In BCO1 the carotenoids interact with only seven residues with aromatic rings, while the interaction of BCO2 is much more varied in terms of the type of interaction, with more residues of different chemical natures.  相似文献   

17.
The interdomain movements of the ligand binding domain (LBD) of mGluR1 in response to agonist or antagonist binding are studied by 2 ns molecular dynamics (MD) simulations. Our results indicate that MD is able to reproduce many of the experimentally determined features of the open and closed conformations of LBD. Analysis of the ligand behavior over time allows to delineate some of the molecular determinants responsible for the agonist-induced or antagonist-blocked LBD responses.  相似文献   

18.
19.
We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号