首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical uncertainties are quantified for calculations of transonic flow around a divergent trailing edge (DTE) supercritical aerofoil. The Reynolds-averaged Navier–Stokes equations are solved using a linearized block implicit solution procedure and mixing-length turbulence model. This procedure has reproduced measurements around supercritical aerofoils with blunt trailing edges that have shock, boundary layer and separated regions. The present effort quantifies numerical uncertainty in these calculations using grid convergence indices which are calculated from aerodynamic coefficients, shock location, dimensions of the recirculating region in the wake of the blunt trailing edge and distributions of surface pressure coefficients. The grid convergence index is almost uniform around the aerofoil, except in the shock region and at the point where turbulence transition was fixed. The grid convergence index indicates good convergence for lift but only fair convergence for moment and drag and also confirms that drag calculations are more sensitive to numerical error. © 1997 by John Wiley and Sons, Ltd.  相似文献   

2.
3.
An investigation of the dependence of the lift-induced drag coefficient C Di of a square-tipped, cambered wing model on Reynolds number for Re ≤ 1 × 106 was conducted. Computed based on the vorticity distribution inferred from the near-field cross-flow velocity measurements of the tip vortex, different C Di prediction schemes were used. The effect of measurement plane size and grid resolution on the C Di calculations was also identified. The C Di estimated by the integral method was found to increase with increasing Re and was below the C Di = C l2eAR prediction. Limits on the measurement plane size and grid resolution were determined to be at least 40% larger than the vortex outside diameter and no larger than 0.63% chord, respectively, in order to provide a good estimate of the induced drag.  相似文献   

4.
ABSTRACT

A numerical study is made to analyze the performance of a secant-ogive-cylinder projectile in the transonic regime in terms of aerodynamic drag. At transonic speeds, the base drag contributes a major portion of the total aerodynamic drag, and hence affects projectile's performances significantly. The base bleed method is applied to reduce the base drag by varying the value of parameters, the bleed quantity (I) and the bleed area ratio (?). The implicit, diagonalized, symmetric Total Variation Diminishing (TVD) scheme, accompanied by a suitable grid, is employed to solve the thin-layer axisymmetric Navier-Stokes equations coupled with the Baldwin-Lomax turbulence model. The computed results show that, in comparison with the case without base bleed, an increase in bleed quantity or a higher injection speed due to a smaller bleed area ratio at fixed bleed quantity can result in a base (and total) drag reduction. At Mach number 0.96, the reductions in base drag and total drag can be as high as 64% and 44%, respectively, for I = 0.1 and ? = 0.3.  相似文献   

5.
介绍了非嵌入多项式混沌法的数学模型,给出了非嵌入式多项式混沌法进行不确定度量化的主要步骤。采用此方法研究了平面、散心爆轰问题数值模拟中, JWL模型参数R1、R2服从均匀分布的随机变量时所引起的爆轰过程计算结果的不确度性,着重分析了爆轰传播过程中压力与密度的统计特性。研究结果表明,非嵌入式多项式混沌法可以为模型输入参数不确定性的传播对输出结果响应量的影响建立一种有效不确定度评估方法,为使用JWL模型时选取参数提供参考。  相似文献   

6.
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.  相似文献   

7.
The influence of the type of gas on the performance of microbubble skin friction reduction was investigated on an axisymmetric body. Gases were selected which covered a wide range of densities and solubilities. Integrated skin friction measurements, which span a range of velocities (U ) from roughly 10 to 20 m/s and tunnel pressures from 1 to 2.6 atm, are presented as a function of gas flow rate. All gases show qualitatively similar behavior. The gas volume flowrate, referenced to injector ambient conditions (tunnel temperature and pressure), is shown to correlate the drag reducing behavior of all the gases at one velocity, independent of pressure. A normalization based on the volume flowrate through the turbulent boundary layer is shown to nearly collapse all the results independent of velocity or pressure. The results indicate that high ambient pressures may degrade the drag reducing capabilities of highly soluble gases.  相似文献   

8.
Axisymmetric viscous, two-dimensional steady and incompressible fluid flow past a solid sphere with porous shell at moderate Reynolds numbers is investigated numerically. There are two dimensionless parameters that govern the flow in this study: the Reynolds number based on the free stream fluid velocity and the diameter of the solid core, and the ratio of the porous shell thickness to the square root of its permeability. The flow in the free fluid region outside the shell is governed by the Navier–Stokes equation. The flow within the porous annulus region of the shell is governed by a Darcy model. Using a commercially available computational fluid dynamics (CFD) package, drag coefficient and separation angle have been computed for flow past a solid sphere with a porous shell for Reynolds numbers of 50, 100, and 200, and for porous parameter in the range of 0.025–2.5. In all simulation cases, the ratio of b/a was fixed at 1.5; i.e., the ratio of outer shell radius to the inner core radius. A parametric equation relating the drag coefficient and separation point with the Reynolds number and porosity parameter were obtained by multiple linear regression. In the limit of very high permeability, the computed drag coefficient as well as the separation angle approaches that for a solid sphere of radius a, as expected. In the limit of very low permeability, the computed total drag coefficient approaches that for a solid sphere of radius b, as expected. The simulation results are presented in terms of viscous drag coefficient, separation angles and total drag coefficient. It was found that the total drag coefficient around the solid sphere as well as the separation angle are strongly governed by the porous shell permeability as well as the Reynolds number. The separation point shifts toward the rear stagnation point as the shell permeability is increased. Separation angle and drag coefficient for the special case of a solid sphere of radius ra was found to be in good agreement with previous experimental results and with the standard drag curve.  相似文献   

9.
Detached-Eddy Simulations Past a Circular Cylinder   总被引:12,自引:0,他引:12  
The flow is calculated with laminar separation (LS) at Reynolds numbers 50,000 and 140,000, and with turbulent separation (TS) at140,000 and 3 × 106. The TS cases are effectively tripped, but compared with untripped experiments at very high Reynolds numbers. The finest grid has about 18,000 points in each of 56 grid planes spanwise; the resolution is far removed from Direct Numerical Simulations, and the turbulence model controls the separation if turbulent. The agreement is quite good for drag, shedding frequency, pressure, and skin friction. However the comparison is obscured by large modulations of the vortex shedding and drag which are very similar to those seen in experiments but also, curiously, durably different between cases especially of the LS type. The longest simulations reach only about 50 shedding cycles. Disagreement with experimental Reynolds stresses reaches about 30%, and the length of the recirculation bubble is about double that measured. The discrepancies are discussed, as are the effects of grid refinement, Reynolds number, and a turbulence-model curvature correction. The finest grid does not give the very best agreement with experiment. The results add to the validation base of the Detached-Eddy Simulation (DES) technique for smooth-surface separation. Unsteady Reynolds-averaged simulations are much less accurate than DES for LS cases, but very close for TS cases. Cases with a more intricate relationship between transition and separation are left for future study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
This paper deals with the design of an efficient open boundary condition (OBC) for fluid dynamics problems. Such problematics arise, for instance, when one solves a local model on a fine grid that is nested in a coarser one of greater extent. Usually, the local solution Uloc is computed from the coarse solution Uext, thanks to an OBC formulated as , where Bh and BH are discretizations of the same differential operator (Bh being defined on the fine grid and BH on the coarse grid). In this paper, we show that such an OBC cannot lead to the exact solution, and we propose a generalized formulation , where g is a correction term. When Bh and BH are discretizations of a transparent operator, g can be computed analytically, at least for simple equations. Otherwise, we propose to approximate g by a Richardson extrapolation procedure. Numerical test cases on a 1D Laplace equation and on a 1D shallow water system illustrate the improved efficiency of such a generalized OBC compared with usual ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents robust synchronization algorithms for the Rossler systems in the presence of unknown time-varying parameters. First, an adaptive synchronization algorithm based on the Lyapunov theory is introduced for identical Rossler systems with mismatched uncertainties. This method does not require a priori information regarding the bound of uncertainties. In addition, this technique is such that the states of the synchronization error system are uniformly ultimately bounded. Since in practice the parameters of the drive and response systems are not necessarily the same, two synchronization approaches are used for the drive and response systems with different parameters. In the first approach, a simple controller is designed for the nominal error system, as if there is no uncertainty in the system. The stability analysis is then investigated as the uncertainties are reintroduced, and it is shown that the size of the uncertainties directly affects the synchronization performance. To deal with this problem, an H controller is designed in which the effects of unknown bounded uncertainties can be attenuated at an appropriate level. It is shown that, using these two approaches, the Rossler systems can be synchronized effectively and the synchronization error is uniformly ultimately bounded. Numerical simulations confirm the effectiveness of the proposed methods.  相似文献   

12.
General Galerkin (G2) is a new computational method for turbulent flow, where a stabilized Galerkin finite element method is used to compute approximate weak solutions to the Navier–Stokes equations directly, without any filtering of the equations as in a standard approach to turbulence simulation, such as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this paper, G2 is used to compute the drag coefficient cD for the flow past a circular cylinder at Reynolds number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate cD to an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem, using less than 105 mesh points, which makes the simulations possible using a standard PC. The mesh is adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, which in this paper is cD. Both the stopping criterion and the mesh‐refinement strategy are based on a posteriori error estimates, in the form of a space–time integral of residuals times derivatives of the solution of a dual problem, linearized at the approximate solution, and with data coupling to the output of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A method of calculation is presented to determine conical wing shapes that minimize the coefficient of (wave) drag, C D, for a fixed coefficient of lift, C L, in steady, hypersonic flow. An optimization problem is considered for the compressive flow underneath wings at a small angle of attack δ and at a high free-stream Mach number M so that hypersonic small-disturbance (HSD) theory applies. A figure of merit, F=C D/C L 3/2, is computed for each wing using a finite volume discretization of the HSD equations. A set of design variables that determine the shape of the wing is defined and adjusted iteratively to find a shape that minimizes F for a given value of the hypersonic similarity parameter, H= (M δ)−2, and planform area. Wings with both attached and detached bow shocks are considered. Optimal wings are found for flat delta wings and for a family of caret wings. In the flat-wing case, the optima have detached bow shocks while in the caret-wing case, the optimum has an attached bow shock. An improved drag-to-lift performance is found using the optimization procedure for curved wing shapes. Several optimal designs are found, all with attached bow shocks. Numerical experiments are performed and suggest that these optima are unique. Received 1 May 1998 and accepted 14 October 1998  相似文献   

14.
Finite element modeling of elasto-plastic contact between rough surfaces   总被引:3,自引:0,他引:3  
This paper presents a finite element calculation of frictionless, non-adhesive, contact between a rigid plane and an elasto-plastic solid with a self-affine fractal surface. The calculations are conducted within an explicit dynamic Lagrangian framework. The elasto-plastic response of the material is described by a J2 isotropic plasticity law. Parametric studies are used to establish general relations between contact properties and key material parameters. In all cases, the contact area A rises linearly with the applied load. The rate of increase grows as the yield stress σy decreases, scaling as a power of σy over the range typical of real materials. Results for A from different plasticity laws and surface morphologies can all be described by a simple scaling formula. Plasticity produces qualitative changes in the distributions of local pressures in the contact and of the size of connected contact regions. The probability of large local pressures is decreased, while large clusters become more likely. Loading-unloading cycles are considered and the total plastic work is found to be nearly constant over a wide range of yield stresses.  相似文献   

15.
The flow of steady incompressible viscous fluid rotating about the z-axis with angular velocity ω and moving with velocity u past a sphere of radius a which is kept fixed at the origin is investigated by means of a numerical method for small values of the Reynolds number Reω. The Navier–Stokes equations governing the axisymmetric flow can be written as three coupled non-linear partial differential equations for the streamfunction, vorticity and rotational velocity component. Central differences are applied to the partial differential equations for solution by the Peaceman–Rachford ADI method, and the resulting algebraic equations are solved by the ‘method of sweeps’. The results obtained by solving the non-linear partial differential equations are compared with the results obtained by linearizing the equations for very small values of Reω. Streamlines are plotted for Ψ = 0·05, 0·2, 0·5 for both linear and non-linear cases. The magnitude of the vorticity vector near the body, i.e. at z = 0·2, is plotted for Reω = 0·05, 0·24, 0·5. The correction to the Stokes drag as a result of rotation of the fluid is calculated.  相似文献   

16.
 Factors that may act on particle motion in high-speed flow are investigated. The classical expressions of drag coefficient C D for a sphere are reviewed. Then, a drag expression is proposed, extending Cunningham’s method to higher velocities and Knudsen numbers. This law, valid from continuum to free molecule conditions, for Re≲200 and M≲1 (where Re and M are, respectively, the Reynolds and Mach numbers based on relative velocity), is used to compare calculated and experimental values of the drag coefficient, as well as the particle velocities across an oblique shock wave. Calculated results are found to be in agreement with experiments. Received: 3 June 1997/Accepted: 16 August 1998  相似文献   

17.
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.List of symbols A, A log law constants - c chord length of manipulator - D drag of the manipulator - dp/dx pressure gradient in the channel - h half height of the channel - H height of the channel (2h) - K log law constant - L length of the channel - L.E. leading edge of the manipulator - P static pressure - P x static pressure at a location x on the channel - P xm static pressure at the location x in the presence of manipulator - p ref static pressure at any reference location x upstream of the manipulator - Re Reynolds number - t thickness of the manipulator - T.E. trailing edge of the manipulator - u velocity in the channel - U friction velocity - U * average velocity in the channel - u c centre-line velocity in the channel - U + U/U * - u m velocities in the channel downstream of the manipulators - u ref velocities in the channel at reference location upstream of the manipulators - w Coles's wake function - W width of channel Also National Aeronautical Laboratory, Bangalore 560 017, India  相似文献   

18.
A gradient‐based optimization procedure based on a continuous adjoint approach is formulated and implemented for steady low Reynolds number flows. A stabilized finite element formulation is proposed to solve the adjoint equations. The accuracy of the gradients from the adjoint approach is verified against the ones computed from a simple finite difference procedure. The validation of the formulation and its implementation is carried out via flow past an elliptical bump whose eccentricity is used as a design parameter. Shape design studies for the elliptical bump are then carried on with a more complex 4th order Bézier parametrization of the bump. Results for, both, optimal design and inverse problems are presented. Using different initial guesses, multiple optimal shapes are obtained. A multi‐objective function with additional constraints on the volume and the drag coefficient of the bump is utilized. It is seen that as more constraints are added to the objective function the design space is constrained and the multiple optimal shapes become progressively similar to each other. The study demonstrates the usefulness of this tool in obtaining multiple engineering solutions to a given design problem and also providing a framework to impose multiple constraints simultaneously. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Smit  T.C.  Reid  R.G. 《Experimental Mechanics》2020,60(8):1135-1148

Background: Incremental hole-drilling with the integral method has been extensively used in composite laminates but is sensitive to small measurement errors. Error sensitivity can be reduced by limiting the number of depth increments used in the calculation procedure. This approach is limited if a rapidly varying residual stress distribution exists since the calculated stress in each incremental depth is considered constant. Distortion of stress results can consequently occur due to averaging effects if the depth increments become too large. Tikhonov regularization is usually applied in isotropic materials to smooth the resulting residual stress distribution and reduce stress uncertainties, but has only been applied to composite laminates using the slitting technique. Objective: The intention of this work is to extend the use of Tikhonov regularization to incremental hole-drilling of composite laminates using the integral method. Methods: Finite element modelling is used to calculate the necessary calibration coefficients for unit pulses of uniform stress. Monte Carlo simulation is used to the determine uncertainties in the calculated residual stress distributions. Tikhonov regularization is optimised to reduce the stress uncertainty, while ensuring that the stress solution is not distorted. Results: The method is demonstrated on a GFRP (Glass fibre reinforced plastic) laminate of [02/902]s construction and the calculated residual stress field is compared with those obtained by the standard integral method and series expansion. Conclusions: It is found that Tikhonov regularization significantly improves the accuracy of the standard integral method in composite laminates and shows good agreement with the series expansion method.

  相似文献   

20.
The shear stability of drag reducing polymer-polymer and polymer-fibre mixtures has been studied at a Reynolds number of 14,000 using a turbulent flow rheometer. The ratio of the drag reduction at a particular pass number to the initial drag reduction has been determined for the mixtures at various pass numbers and compositions in order to determine the effect of composition on the shear stability of the mixtures.It has been found in both cases that when there is a drastic difference in the shear stabilities of the constituents of the mixtures, the incorporation of a small amount of the less shear stable drag reducing agent reduces the shear stability drastically. On the other hand, when the shear stability of the constituents are of the same order, there is only a proportional change in the shear stability of the mixtures on addition of one component to the other. A correlation between the decay coefficient of the mixture (R M ), the decay coefficients of the constituents (R 1 andR 2 ) and the weight fractions of the mixture components (W 1 andW 2) is suggested. An efficacious method for preparing asbestos fibre stock suspensions is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号