首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly reactive 1 : 1 intermediate generated in the reaction between dialkyl acetylenedicarboxylate (=but‐2‐ynedioic acid dialkyl ester) 4 and triphenylphosphine was trapped by 2‐amino‐4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehydes 5 to yield highly functionalized dialkyl‐1,5‐dihydro‐5‐oxo‐1‐phenyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,3‐dicarboxylates in high yield.  相似文献   

2.
A new four‐component synthesis of spiro[4H‐indeno[1,2‐b]pyridine‐4,3′‐[3H]indoles] and spiro[acenaphthylene‐1(2H),4′‐[4H‐indeno[1,2‐b]pyridines] by the reaction of indane‐1,3‐dione, 1,3‐dicarbonyl compounds, isatins (=1H‐indole‐2,3‐diones) or acenaphthylene‐1,2‐dione, and AcONH4 in refluxing toluene in the presence of a catalytic amount of pyridine is reported.  相似文献   

3.
2,3,4‐Trisubstituted quinolines, substituted with adamantan‐1‐yl or (adamantan‐1‐yl)methyl in the 4‐position, were prepared from the corresponding admantan‐1‐yl 2‐aminophenyl ketones or admantan‐1‐ylmethyl 2‐aminophenyl ketones and ketones with an α‐CH2 group. These reactions were carried out under neat conditions or in toluene, and the products were obtained in moderate‐to‐excellent yields. The scope and limitations of the examined procedures are discussed. All new compounds are fully characterized by IR and NMR spectroscopy and mass spectrometry. The molecular structures of five new quinolines, obtained via single‐crystal X‐ray diffraction analyses, are discussed.  相似文献   

4.
An unexpected approach to the preparation of quinoxaline and pyrido[2,3‐b]pyrazine derivatives 5 is described. The reaction between 1H‐indole‐2,3‐diones 1 , 1‐phenyl‐2‐(triphenylphosphoranylidene)ethanone ( 2 ), and benzene‐1,2‐ or pyridine‐2,3‐diamines 3 proceeds in MeOH under reflux in good to excellent yields (Scheme 1 and Table). No co‐catalyst or activator is required for this multi‐component reaction (MCR), and the reaction is, from an experimental point of view, simple to perform. The structures of 5, 5′ , and 6 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and were confirmed by comparison with reference compounds. A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

5.
6.
7.
Reaction of azacalix[4]pyridine and azacalix[1]arene[3]pyridine with methyl iodide afforded N-methylated products selectively and highly efficiently. Crystal structures revealed that the modified electronic nature of the pyridines could change the conjugation between the bridging nitrogen and the neighbouring aromatics.  相似文献   

8.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A facile heterogeneous synthesis of 3‐amino‐1‐aryl‐1H‐naphtho[2,1‐b]pyran and 2‐amino‐4‐aryl‐4H‐1‐benzopyran derivatives 3 and 5 , respectively, was carried out efficiently by one‐pot three‐component coupling of an aromatic aldehyde 1 , an active methylene compound 2 , and naphthalen‐2‐ol or a phenol 4 in the presence of 5‐Å molecular sieves under solvent‐free microwave‐irradiation conditions (Scheme 1 and 2, Tables 1 and 2). The catalyst was recovered and recycled (Table 3).  相似文献   

10.
An efficient one‐pot synthesis of novel heterocyclic derivatives, 2‐aryl‐1,4‐oxathiino[2,3‐b]quinoxalines or ‐pyrazines 5 , via the reaction of 2,3‐dichloroquinoxaline or ‐pyrazine with Na2S?9 H2O, and subsequent treatment of the resulting 2‐chloro‐3‐sodiosulfanylquinoxaline or ‐pyrazine 2 with 1‐aryl‐2‐bromo‐1‐alkanones and then NaH under mild conditions is described.  相似文献   

11.
2,3‐Dihydro‐4H‐thiopyrano[2,3‐b]pyridin‐4‐ones 4 were prepared by a three‐step sequence from commercially available 2‐chloropyridine ( 1 ). Thus, successive treatment of 1 with iPr2NLi (LDA) and α,β‐unsaturated aldehydes gave 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ols 2 , which were oxidized with MnO2 to 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ones 3 . The reactions of 3 with NaSH?n H2O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3‐dihydro‐4H‐thiopyrano[2,3‐c]pyridin‐4‐ones 8 and 2,3‐dihydro‐4H‐thiopyrano[3,2‐c]pyridin‐4‐ones 12 were obtained starting from 3‐chloropyridine ( 5 ) and 4‐chloropyridine ( 9 ), respectively.  相似文献   

12.
We hereby report the first preparation of the 5,6‐dihydro‐4H‐furo[2,3‐c]pyrrol‐4‐one ( 3 ) and its derivatives starting from methyl 3‐(methoxycarbonyl)furan‐2‐acetate ( 8 ). The ester functionality connected to the methylene group was regiospecifically converted to the desired monohydrazide 9 . Conversion of 9 into the acyl azide 10 followed by Curtius rearrangement gave the corresponding isocyanate derivative 11 (Scheme 2). Reaction of 11 with different nucleophiles produced urethane and urea derivatives (Scheme 3). Intramolecular cyclization reactions provided the target compounds (Scheme 5). Removal of the amine‐protecting group formed the title compound 3 .  相似文献   

13.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

14.
Ionic liquids were found to be a suitable reaction medium for 1,4‐dipolar cycloaddition reactions of an isoquinoline, an activated alkyne, and a 4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde at room temperature to afford [1]benzopyrano‐pyrido‐isoquinoline (=9aH,15H‐benzo[a][1]benzopyrano[2,3‐h]quinolizine) derivatives selectively in good yields. The ionic liquid can be recovered and recycled in further runs without loss of activity.  相似文献   

15.
Thieno[2,3‐b]indole derivatives were efficiently prepared via the reaction of 1,3‐dihydro‐2H‐indole‐2‐thiones with α‐bromo‐substituted ketones or aldehydes and in the presence of Et3N (Scheme 2 and Table). The reaction took place under very mild conditions and in short times with good to excellent yields.  相似文献   

16.
Treatment of 6‐hydroxy‐5‐phenylazo‐2‐thioxo‐4(1H)‐pyrimidinone 1 with a series of hydrazonoyl halides 2 and N,2‐diaryl‐diazinecarbohydrazonoyl halides 9 in dioxane in the presence of triethylamine under reflux furnishes 6‐phenylazo and 3,6‐bis(arylazo)‐7‐hydroxy‐1H‐[1,2,4]triazolo[4,3‐a]pyrimidin‐5(4H)‐one derivatives 7 and 10 , respectively. The biological activities of the products were evaluated.  相似文献   

17.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Regarding to the importance of thieno[2,3‐b]thiophens and isothiocyanaetes reactiveties in the physical, chemical and pharmaceutical fields, this study has been undertaken to prepare the target compound 5‐cyano‐2‐carbethoxythieno[2,3‐b]thiophenyl‐3,4‐diisothiocyanates via a safe method. The formed isothiocyanates derivative was reacted with aromatic amines, acid hydrazied and some active methylene groups, followed by cyclization reaction for the formed intermediates to give new series of heterocyclic compounds  相似文献   

19.
The reaction of the aminopyrazole 1 with benzenesulfonyl chloride, arenediazonium salt, chloroacetyl chloride, ethoxy methyleneamlononitrile and with ethyl 2‐cyano‐3‐ethoxyacrylate gave the substituted 3‐methyl‐1‐phenylpyrazole 2–5a,b . Compound 5b was cyclized to 6 and to 7 by treating it with AlCl3 and with POCl3, respectively. Compound 6 converted to 7 by boiling it in POCl3/PCl5. Compound 10b was produced through reaction of 9 with acetophenone. Reaction of 1 with benzylidinemalononitrile afforded 11 . New methods for preparation of 15 and 16 are described. The reaction of 8 with malononitrile, thiosemicarbazide, phenyl hydrazine and acetophenone afforded compounds 18–21 . The reaction of 21 with malononitrile gave 22 . Compounds 23–26 were produced upon reaction of 10a with malononitrile, phenyl hydrazine, thiosemicarbazide, semicarbazide and with benzaldehyde, respectively.  相似文献   

20.
Five new 6‐ferrocenyl‐3‐substituted 7H‐1,2,4‐triazolo[3, 4‐b]‐1,3,4‐thiadiazines ( 3a‐e ) have been synthesized and characterized on the basis of elemental analyses and spectral data. The antiproliferative activities were examined in two human cell lines (BJ and HT 1080) with the acid phosphatase assay. The results showed that all compounds could reduce cell viability. The significant difference between the two cell lines was that fibrosarcoma HT 1080 cells could indeed be more susceptible to the compounds than the normal fibroblast BJ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号