首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

2.
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self‐cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule‐assisted hydrothermal method to synthesize β‐phase Ni(OH)2 peony‐like complex nanostructures with second‐order structure nanoplate structure. The novel β‐Ni(OH)2 nanostructures exhibit high‐power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)2, as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.  相似文献   

3.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

4.
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices.  相似文献   

5.
An efficient nanocatalyst of ZnO‐supported CuO/Al2O3 (CuO/ZnO/Al2O3 nanocatalyst) was prepared by the co‐precipitation method and characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Brunauer–Emmett–Teller surface area analysis. CuO/ZnO/Al2O3 nanocatalyst proved to be a very efficient catalyst on the synthesis of propargylamines under solvent‐free conditions in high yields. Moreover, the catalyst can be recyclable without reducing catalytic activity up to five times.  相似文献   

6.
Porous CuO micro‐/nanostructures with clean surface, prepared through Cu2(OH)2CO3 precursor followed by calcination in air, were proven to be an effective peroxidase mimic. They can quickly catalyze oxidation of the peroxidase substrate 3,3′,5,5′‐tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue color. The obtained porous CuO micro‐/nanostructure have potential application in wastewater treatment. The apparent steady‐state kinetic parameter was studied with TMB as the substrate. In addition, the potential application of the porous CuO in wastewater treatment was demonstrated with phenol‐containing water as an example. Such investigation not only confirms the intrinsic peroxidase‐like activity of micro‐/nanostructured CuO, but also suggests its potential application in wastewater treatment.  相似文献   

7.
《化学:亚洲杂志》2017,12(20):2720-2726
Iron‐based (oxy)hydroxides are especially attractive electrocatalysts for the oxygen evolution reaction (OER) owing to their earth abundance, low cost, and nontoxicity. However, poor OER kinetics on the surface restricts the performance of the FeOOH electrocatalyst. Herein, a highly efficient and stable Ni(OH)2/β‐like FeOOH electrocatalyst is obtained by facile electroactivation treatment. The activated Ni(OH)2/β‐like FeOOH sample indicates an overpotential of 300 mV at 10 mA cm−2 for the OER, and no clear current decay after 50 h of testing; this is comparable to the most efficient nickel‐ and cobalt‐based electrocatalysts on planar substrates. Furthermore, studies suggest that β‐like FeOOH plays a key role in remarkably enhancing the performance during the electroactivation process owing to its metastable tunnel structure with a lower barrier for interface diffusion of Ni2+ ions between the bilayer electrocatalyst. This study develops a new strategy to explore efficient and low‐cost electrocatalysts and deepens understanding of bilayer electrocatalysts for the OER.  相似文献   

8.
Crystals of dihydroxysamarium chloride were synthesized hydro­thermally at 473 K. The orthorhombic structure was determined by single‐crystal X‐ray diffraction analysis. β‐­Sm(OH)2Cl exhibits a lamellar structure built up from the stacking of neutral slabs; all the atoms lie on crystallographic mirror planes. The structure is stabilized by strong hydrogen bonds between the OH groups and the Cl ions of adjacent layers.  相似文献   

9.
Bi2Se3 attracts intensive attention as a typical thermoelectric material and a promising topological insulator material. However, previously reported Bi2Se3 nanostructures are limited to nanoribbons and smooth nanoplates. Herein, we report the synthesis of spiral Bi2Se3 nanoplates and their screw‐dislocation‐driven (SDD) bidirectional growth process. Typical products showed a bipyramid‐like shape with two sets of centrosymmetric helical fringes on the top and bottom faces. Other evidence for the unique structure and growth mode include herringbone contours, spiral arms, and hollow cores. Through the manipulation of kinetic factors, including the precursor concentration, the pH value, and the amount of reductant, we were able to tune the supersaturation in the regime of SDD to layer‐by‐layer growth. Nanoplates with preliminary dislocations were discovered in samples with an appropriate supersaturation value and employed for investigation of the SDD growth process.  相似文献   

10.
A Pd2Co precursor, [Et3NH]2[CoPd2(μ‐4‐I‐3,5‐Me2pz)4Cl4], was used to synthesize palladium–cobalt nanorings and nanoparticles on highly ordered pyrolytic graphite (HOPG) surface. Different types of nanostructures were formed on HOPG surfaces and were controlled by relative humidity (%RH). These structures included Pd2Co nanorings on HOPG surface by self‐assembly with humidity control. The %RH affects the size and dispersion of the self‐formation of the Pd2Co rings on HOPG surfaces. The modified HOPG surface with Pd2Co precursor at 80%RH has rings of similar sizes, while modification at 76%RH gives well‐formed rings and 70%RH with smaller diameters. After thermal reduction of the Pd2Co precursor on HOPG, bimetallic nanostructures were formed. X‐ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy with energy‐dispersive X‐ray fluorescence spectroscopy techniques were employed to study the composition and morphology of the nanostructures formations on the HOPG surface. Electrochemical characterization of the Pd2Co nanostructures was performed. Moreover, the bimetallic catalyst has electrocatalytic activity for the oxygen reduction reaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

12.
Three‐dimensional flower‐like α‐Fe2O3 nanostructures have been successfully synthesized by a simple surfactant‐free environmental friendly solvolthermal process. The as‐prepared products were investigated by X‐ray powder diffraction, transmission electron microscopy, and field emission scanning electron microscopy. By adjusting the synthetic parameters, the shape of the α‐Fe2O3 nanostructures can be controlled. The three‐dimensional flower‐like α‐Fe2O3 nanostructures were found to be highly active as catalysts for phenol alkylation. The effects of various parameters, such as reaction temperature, reaction time and the amount of catalyst, were studied. The catalyst was stable and could be reused three times in normal atmosphere without suffering appreciable loss in catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Copper nanostructures were produced as an effective and regioselective catalyst for the synthesis of 1,2,3‐triazoles from a wide range of raw materials, such as sodium azide, epoxides and terminal alkynes, in water via a one‐pot three‐component click reaction. The new heterogeneous catalyst was prepared by a simple ball mill reduction of CuO with NaBH4 using a ball‐to‐powder weight ratio of 50:1 under air atmosphere at room temperature. The catalyst was fully characterized using scanning electron microscopy, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. The copper nanostructures catalysed both ring opening and triazole cyclization steps. Products were obtained in high yields and short reaction times. The reactions were performed at ambient temperature in water as a green solvent. The Cu/Cu2O nanostructures revealed high reusability and high stability via a simple recycling process.  相似文献   

14.
The controlled synthesis of Mg(OH)2 nanowires and microflowers composed of nanoplates was successfully achieved by a template‐free hydrothermal synthetic method. It was found that the reaction medium played a crucial role in the morphological control of the precursor nanostructures. The high polarity of water molecules favored the polar growth of the precursor, resulting in the formation of nanowires with a diameter of 80 nm, whereas a mixed water/ethanol medium with a lower degree of polarity led to the formation of microflowers. Moreover, mesoporous MgO nanostructures could be obtained by further annealing these as‐prepared precursors in air at 500 °C for 2 h. During thermal treatment, the wire‐ and flower‐like morphologies were retained. Porosity formation was due to thermal decomposition of Mg(OH)2 and release of H2O. Both the mesoporous MgO nanowires and microflowers showed superior ability of adsorbing the organic dye methyl orange, and thus they are promising candidates for polluted water treatment.  相似文献   

15.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

16.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

17.
Two cobalt complexes, [Co3(L)2(CH3OH)23‐OH)2] ( 1 ) and [Co(L)(bpe)0.5] · H2O ( 2 ) [H2L = 5‐(4‐carboxyphenoxy)‐pyridine‐2‐carboxylic acid; bpe = 1, 2‐bis(4‐pyridyl)ethylene] were synthesized and fully characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, thermogravimetric analysis (TGA), and magnetic analysis. Complex 1 has a two‐dimensional (2D) structure with puckered Co–O–Co chains, and 2 displays a three‐dimensional (3D) network containing one‐dimensional rectangular channels with dimensions of 9.24 × 13.84 Å. In complex 1 , variable‐temperature magnetic susceptibility measurements indicate antiferromagnetic interactions between cobalt magnetic centers.  相似文献   

18.
CuO/ZnO nanocomposites were synthesized on Al2O3 substrates by a hybrid plasma‐assisted approach, combining the initial growth of ZnO columnar arrays by plasma‐enhanced chemical vapor deposition (PE‐CVD) and subsequent radio frequency (RF) sputtering of copper, followed by final annealing in air. Chemical, morphological, and structural analyses revealed the formation of high‐purity nanosystems, characterized by a controllable dispersion of CuO particles into ZnO matrices. The high surface‐to‐volume ratio of the obtained materials, along with intimate CuO/ZnO intermixing, resulted in the efficient detection of various oxidizing and reducing gases (such as O3, CH3CH2OH, and H2). The obtained data are critically discussed and interrelated with the chemical and physical properties of the nanocomposites.  相似文献   

19.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐xylopyranoside, C12H22O10, (II), crystallizes as colorless needles from water with positional disorder in the xylopyranosyl (Xyl) ring and no water molecules in the unit cell. The internal glycosidic linkage conformation in (II) is characterized by a ϕ′ torsion angle (C2′Gal—C1′Gal—O1′Gal—C4Xyl) of 156.4 (5)° and a ψ′ torsion angle (C1′Gal—O1′Gal—C4Xyl—C3Xyl) of 94.0 (11)°, where the ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atoms in the β‐Xyl and β‐Gal residues, respectively. By comparison, the internal linkage conformation in the crystal structure of the structurally related disaccharide, methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside], (III) [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], is characterized by ϕ′ = 153.8 (2)° and ψ′ = 78.4 (2)°. A comparison of β‐(1→4)‐linked disaccharides shows considerable variability in both ϕ′ and ψ′, with the range in the latter (∼38°) greater than that in the former (∼28°). Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Gal in the crystal structure of (II), analogous to the inter‐residue hydrogen bond detected between atoms O3Glc and O5′Gal in (III). The exocyclic hydroxymethyl conformations in the Gal residues of (II) and (III) are identical (gauche–trans conformer).  相似文献   

20.
As the properties of nanomaterials are strongly dependent on their size, shape and nanostructures, probing the relations between macro‐properties and nanostructures is challenging for nanoscientists. Herein, we deliberately chose three types of Ni(OH)2 with hexagonal, truncated trigonal, and trigonal hourglass‐like nanostructures, respectively, as the electrode modifier to demonstrate the correlation between the nanostructures and their electrocatalytic performance towards L ‐histidine. It was found that the hexagonal hourglass‐like Ni(OH)2 sample had the best electrocatalytic activity, which can be understood by a cooperative mechanism: on one hand, the hexagonal sample possesses the largest specific surface area and the tidiest nanostructure, resulting in the most orderly packing on the electrode surface; on the other hand, its internal structure with the most stacking faults would generate a lot of unstable protons, leading to an enhanced electronic conductivity. The findings are important because they provide a clue for materials design and engineering to meet a specific requirement for electrocatalysis of L ‐histidine, possibly even for other biomolecules. In addition, the hexagonal Ni(OH)2‐based biosensor shows excellent sensitivity and selectivity in the determination of L ‐histidine and offers a promising feature for the analytical application in real biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号