首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work deals with the potentiality of nano liquid chromatography (Nano‐LC) for the chiral separation of racemic mixture of tryptophan and some selected derivatives by using 100 µm i.d. fused silica capillary packed with teicoplanin bonded to 5 µm diol silica stationary phase. The experiments were carried out by using a cheap and laboratory‐assembled nano‐LC–UV system. Elution was done in an isocratic mode using a polar organic mobile phase. In order to find the optimum chiral separation of the studied enantiomers, some chromatographic experimental parameters were systematically studied and optimized. Among them, mobile phase composition, namely organic modifier type and concentration, buffer type and pH and aqueous content and sample solvent dilution on retention time, retention factor and enantioresolution factor were studied. Baseline enantioresolution and good peak shape was achieved utilizing the mobile phase containing 40 mM ammonium formate at pH pH 2.5 in ACN/water/acetone (60:30:10, v/v/v) at 520 nL/min in less than 8 min analysis time.  相似文献   

2.
A new type of polymethacrylate‐based monolithic column with chiral stationary phase was prepared for the enantioseparation of aromatic amino acids, namely d ,l ‐phenylalanine, d ,l ‐tyrosine, and d ,l ‐tryptophan by CEC. The monolithic column was prepared by in situ polymerization of butyl methacrylate (BMA), N‐methacryloyl‐l ‐histidine methyl ester (MAH), and ethylene dimethacrylate (EDMA) in the presence of porogens. The porogen mixture included DMF and phosphate buffer. MAH was used as a chiral selector. FTIR spectrum of the polymethacrylate‐based monolith showed that MAH was incorporated into the polymeric structure via in situ polymerization. Some experimental parameters including pH, concentration of the mobile phase, and MAH concentration with regard to the chiral CEC separation were investigated. Single enantiomers and enantiomer mixtures of the amino acids were separately injected into the monolithic column. It was observed that l ‐enantiomers of aromatic amino acids migrated before d ‐enantiomers. The reversal enantiomer migration order for tryptophan was observed upon changing of pH. Using the chiral monolithic column (100 μm id and 375 μm od), the best chiral separation was performed in 35:65% ACN/phosphate buffer (pH 8.0, 10 mM) with an applied voltage of 12 kV in CEC. SEM images showed that the chiral monolithic column has a continuous polymeric skeleton and large through‐pore structure.  相似文献   

3.
This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter‐current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di‐n‐butyl l ‐tartrate combined with boric acid as the chiral selector. The two‐phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di‐n‐butyl l ‐tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high‐speed CCC in a single run, yielding 40–42 mg of (R)‐ and (S)‐propafenone enantiomers with an HPLC purity over 90–95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85–90%.  相似文献   

4.
The enantio‐separations of eight 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (2‐APA NSAIDs) were established using reversed‐phase high‐performance liquid chromatography with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP‐β‐CD and column temperature on retention and enantioselective separation were investigated. With 2‐APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP‐β‐CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC‐ODS (150 × 4.6 mm i.d., 5 μm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0–5.5, 20 mM) containing 25 mM HP‐β‐CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2‐APA NSAIDs in an enantioselective skin permeation study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
An open tubular molecule imprinted polymer (OT‐MIP) capillary column has been prepared for chiral separation of ofloxacin enantiomers in CEC. The S‐ofloxacin imprinted OT column was fabricated by thermally initiated non‐covalent polymerization procedure inside a pretreated and silanized fused silica capillary. The template molecule was incorporated with methacrylic acid (MAA), ethylene glycol dimethacrylate (EDMA) and 4‐styrenesulfonic acid (4‐SSA) and dissolved in a porogen mixture of ACN/2‐propanol (9:1). The separation efficiency of the 4‐SSA MIP column was found quite better than that of the MIP column without 4‐SSA. It has been demonstrated that our OT‐MIP column can separate ofloxacin enantiomers with excellent chiral separation efficiency after tuning the various chromatographic conditions. The optimized chromatographic eluent was 85:15, v/v%, ACN/60 mM sodium acetate at pH 7. The separation efficiency and selectivity of chiral separation of this study were far better than those obtained by previous methods for chiral separation of R‐ and S‐ofloxacin.  相似文献   

6.
Three chiral stationary phases were prepared by dynamic coating of sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) with different degrees of substitution, onto strong anion‐exchange stationary phases. The enantioselective potential and stability of newly prepared chiral stationary phases were examined using a set of structurally different chiral analytes. Measurements were performed in RP‐HPLC. Mobile phases consisted of methanol/formic acid, pH 2.10, and methanol/10 mM ammonium acetate buffer, pH 4.00, in various volume ratios. SBE‐β‐CDs with degrees of substitution (DS) 4, 6.3, and 10 proved suitable for the enantioseparation of 14, 11, and 8 analytes, respectively. The SBE‐β‐CD DS 4 based chiral stationary phase enabled the enantioseparation of the nearly all basic and neutral compounds. Chiral stationary phases with higher sulfobutylether‐β‐cyclodextrin substitution (especially DS 10) yielded higher enantioresolution values for acidic compounds.  相似文献   

7.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

8.
A cellulose tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co‐solvents (methanol and propan‐2‐ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO2/methanol/isopropylamine 80:20:0.1 v/v/v or CO2/propan‐2‐ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β‐blockers. A high‐performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan‐2‐ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high‐performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high‐performance liquid chromatography were also found.  相似文献   

9.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

10.
Recycling high‐speed counter‐current chromatography was successfully applied to the preparative separation of oxybutynin enantiomers. The two‐phase solvent system consisted of n‐hexane, methyl tert‐butyl ether, and 0.1 mol/L phosphate buffer solution (pH = 5.0) with the volume ratio of 6:4:10. Hydroxypropyl‐β‐cyclodextrin was employed as the chiral selector. The influence of factors on the chiral separation process, including the concentration of chiral selector, the equilibrium temperature, the pH value of the aqueous phase were investigated. Under optimum separation conditions, 15 mg of oxybutynin racemate was separated with the purities of both the enantiomers over 96.5% determined by high‐performance liquid chromatography. Recovery for the target compounds reached 80–82% yielding 6.00 mg of (R)‐oxybutynin and 6.15 mg of (S)‐oxybutynin. Technical details for recycling elution mode were discussed.  相似文献   

11.
The separation of eight antibiotics belonging to 5‐nitroimidazole family was carried out by means of CEC coupled with MS. Preliminary experiments were carried out with ultraviolet detection in order to select the proper stationary and mobile phase. Among the different stationary phases studied (namely Lichrospher C18, 5 μm particle size; CogentTM Bidentate C18, 4.2 μm; Pinnacle II? Phenyl, 3 μm; Pinnacle II? Cyano, 3 μm), Cogent? Bidentate C18 (4.2 μm) gave the best performance. For CEC‐MS coupling, a laboratory assembled liquid‐junction‐nano‐spray interface was used. In order to achieve a good sensitivity, special attention was paid to both optimization of the sheath liquid composition as well as selection of the injection mode. Under optimized CEC‐ESI‐MS conditions, the separation was accomplished within 22 min by using a column packed with a mixture of Bidentate C18:Lichrospher Silica‐60 (5 μm) 3:1 w/w, an inlet pressure of 11 bar, a voltage of 15 kV, and a mobile phase composed by 45:10:45 v/v/v ACN/MeOH/water containing ammonium acetate (5 mM pH 5). A combined hydrodynamic and electrokinetic injection of 8 bar, 15 kV, and 96 s was adopted. The method was validated in terms of repeatability and intermediate precision of retention times and peak areas, linearity, and LODs and LOQs. RSDs values were <2.9% for retention times and <16.1% for peak areas in both intraday and interday experiments. LOQ values were between 0.09 and 0.42 μg/mL for all compounds. Finally, the method was applied to the determination of three most employed 5‐nitroimidazole antibiotics (metronidazole, secnidazole, and ternidazole) in spiked urine samples, subjected to a SPE procedure. Recovery values in the 67–103% range were obtained. Furthermore, for the selected antibiotics, CEC‐MS2 spectra were obtained providing the unambiguous confirmation of these drugs in urine samples.  相似文献   

12.
A simple, sensitive, and rapid method for determination of L‐trantinterol in rat plasma was developed for the first time by using LC coupled to MS/MS based on chiral stationary phase. A baseline separation of the enantiomers of trantinterol was achieved on a Chirobiotic V column, using a mixture of acetonitrile–methanol–ammonia–acetic acid (80:20:0.01:0.02, v/v/v/v) as the mobile phase. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via ESI. The calibration curve was linear in concentration range from 0.270 to 108 ng/mL in plasma with the lower limit of quantification of 0.270 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 10.9% and the accuracy (relative error) was from 2.6 to 9.2% at all quality control levels. The method has been successfully applied to a study of L‐trantinterol pharmacokinetics in rats.  相似文献   

13.
《Electrophoresis》2018,39(8):1086-1095
The chiral organic‐inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open‐tubular capillary electrochromatography (OT‐CEC). Hence, a novel protocol for the preparation of an OT column coated with nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate) (nano‐ABDMPC)‐silica hybrid sol through in situ layer‐by‐layer self‐assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano‐ABDMPC‐silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1‐phenyl‐2‐propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run‐to‐run, day‐to‐day and column‐to‐column. These results demonstrated the promising applicability of nano‐ABDMPC‐silica hybrid sol coated OT column in CEC enantioseparations.  相似文献   

14.
This paper describes an improved access to mono‐6A‐aminoethylamino‐β‐CD (β‐CDen), a very efficient cationic chiral selector for CZE in the separation of eight chiral aromatic vicinal diols. The β‐CDen concentration has a strong influence on the efficiency of enantioseparation. The effects of the pH and concentration of the BGE, the capillary temperature, and the applied voltage on the resolution and separation selectivity have been studied. Excellent chiral resolution was achieved under the optimal conditions of β‐CDen 10 mM, pH 10, 200 mM borate buffer at 15 kV and 20°C within 20 min. Moreover, the developed method was successfully applied to the determination of the enantiomeric purity of the catalytic asymmetric dihydroxylation (AD) reaction products.  相似文献   

15.
A hydrophilic monolithic CEC column was prepared by thermal copolymerization of zwitterionic monomer 2‐methacryloyloxyethyl phosphorylcholine (MPC), pentaerythritol triacrylate (PETA), either methacrylatoethyl trimethyl ammonium chloride (META) or sodium 2‐methylpropene‐1‐sulfonate (MPS) in a polar binary porogen consisting of methanol and THF. A typical hydrophilic interaction LC retention mechanism was observed for low‐molecular weight polar compounds including amides, nucleotides, and nucleosides in the separation mode of hydrophilic interaction CEC, when high content of ACN (>60%) was used as the mobile phase. The effect of the electrostatic interaction between the analytes and the stationary phase was found to be negligible. The poly(MPC‐co‐PETA‐co‐META or MPS) monolithic columns have an average column efficiency of 40 000 plates/m and displayed with a satisfactory repeatability in terms of migration time and peak areas. Finally, the column was successfully applied to determine the impurities of a positively charged drug pramipexole which are often separated by ion pair RP chromatography due to their high hydrophilicity. All four components can be baseline separated within 5 min with BGE consisting of ACN/20 mM ammonium formate buffer (pH 3.0; 80/20).  相似文献   

16.
N‐(2,4‐dinitrophenyl)‐proline and N‐(2,4‐dinitrophenyl)‐serine were enantiomerically resolved on the BSA chiral stationary phase by HPLC in reversed‐phase mode. Effects of chromatographic conditions on enantioseparation and elution order have been investigated in detail. For these two samples, reversal of enantiomer elution order was observed by changing buffer pH, the content of acetonitrile, or alcohol modifiers in mobile phase, which is firstly reported in the BSA chiral stationary phase studies. More interestingly, combined effect between buffer pH and the content of acetonitrile was also observed. In addition, coelution range of enantiomers varied along with the content of acetonitrile in mobile phase.  相似文献   

17.
Chiral separation of 12 pairs of basic analyte enantiomers including oxybutynin, bambuterol, tradinterol, clenbuterol, clorprenaline, terbutaline, tulobuterol, citalopram, phencynonate, fexofenadine, salbutamol, and penehyclidine was conducted by capillary electrophoresis using a single‐isomer anionic β‐cyclodextrin derivative, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin as the chiral selector. Parameters influencing separation were studied, including background electrolyte pH, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin concentration, buffer concentration, and separation voltage. A background electrolyte consisting of 50 mM Tris‐H3PO4 and 6 mM heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin at pH 2.5 was found to be highly efficient for the separation of most enantiomers, with other conditions of normal polarity mode at 10 kV, detection wavelength of 210 nm using hydrodynamic injection for 3 s. Under the optimal conditions, baseline resolution (>1.50) for 11 pairs of enantiomers and somewhat lower resolution for penehyclidine enantiomers (1.17) were generated. Moreover, the possible mechanism of separation of clenbuterol, oxybutynin, salbutamol, and penehyclidine was investigated using a computational modeling method.  相似文献   

18.
徐雪峰  郭志谋  梁鑫淼 《色谱》2012,30(11):1188-1193
研究了在反相高效液相色谱模式下,基于点击化学的β-环糊精手性固定相对苯并恶嗪类对映体的手性分离情况。考察了流动相中有机改性剂的类型和比例、缓冲盐的浓度和pH值对分离的影响。考察结果表明: 乙腈作为有机改性剂比甲醇更有利于苯并恶嗪对映体的分离;乙酸三乙胺缓冲盐体积分数从0.1%增大到1.0%时,苯并恶嗪对映体的保留时间和分离度都随之减小,在pH 4.1时苯并恶嗪对映体具有最大分离度。因此确定乙腈和体积分数为0.1%的乙酸三乙胺缓冲盐流动相(pH 4.1)为最佳分离条件。分离机理研究结果表明,固定相和样品之间的包容络合相互作用以及样品和固定相之间的氢键作用,是样品得以分离的基础。本研究为进一步深入研究β-环糊精固定相提供了实验基础,同时也证明了点击化学在手性环糊精固定相制备中具有极大潜力。  相似文献   

19.
High‐speed countercurrent chromatography (HSCCC) combined with biphasic chiral recognition was successfully applied to the resolution of phenylsuccinic acid enantiomers. d ‐Isobutyl tartrate and hydroxypropyl‐β‐cyclodextrin were employed as lipophilic and hydrophilic selectors dissolved in the organic stationary phase and aqueous mobile phase, respectively. The two‐phase solvent system was made up of n‐hexane/methyl tert‐butyl ether/water (0.5:1.5:2, v/v/v). Impacts of the type and concentration of chiral selectors, the pH value of the aqueous phase solution as well as the temperature on the separation efficiency were investigated. By means of preparative HSCCC, pure enantiomer was obtained by separating 810 mg of racemate with a purity >99.5% and a recovery rate between 82 and 85%. The experimental results indicate that biphasic recognition HSCCC provide a promising means for efficient separation of racemates.  相似文献   

20.
Nano‐LC and CEC were coupled to MS through a nanospray or a pressurized liquid‐junction interface for the simultaneous separation and determination of 11 estrogenic compounds. Different stationary phases, that is, phenyl, C18, and C18 bidentate silica hydrate, were studied. For both techniques, the phenyl stationary phase was the best option, considering separation efficiency, selectivity, and resolution. Under the optimized conditions, the baseline separation of the target compounds (including estradiol and zearalanol epimers) was achieved in less than 20 min in nano‐LC‐MS and less than 13 min in CEC‐MS. Molecular imprinted polymer SPE was used for extracting the target compounds from mineral water samples with the analysis of nano‐LC‐MS. The whole molecular imprinted polymer SPE nano‐LC‐MS method was validated through a recovery study at two levels of concentration. Sensitivity was improved by on‐column focusing technique obtaining LODs in the range 1.4–55.4 ng/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号