共查询到20条相似文献,搜索用时 15 毫秒
1.
Edmund Dikow 《Transport in Porous Media》1988,3(2):173-184
A saturated flow problem with spatially varying conductivity is studied in a rectangular domain. An expansion of the flow equation with respect to small perturbations of the conductivity is given. Discrete spectra are used to calculate the expected flux across the outflow boundary and its variability. The results obtained are compared with results based on Monte Carlo studies. Another way to deal with heterogeneous soils is to replace the actual conductivity by a smooth, so-called, effective conductivity. A comparison is made between results based on that approach and our results. 相似文献
2.
Efficiency of high‐performance discontinuous Galerkin spectral element methods for under‐resolved turbulent incompressible flows 下载免费PDF全文
The present paper addresses the numerical solution of turbulent flows with high‐order discontinuous Galerkin methods for discretizing the incompressible Navier‐Stokes equations. The efficiency of high‐order methods when applied to under‐resolved problems is an open issue in the literature. This topic is carefully investigated in the present work by the example of the three‐dimensional Taylor‐Green vortex problem. Our implementation is based on a generic high‐performance framework for matrix‐free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier‐Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under‐resolved regime, our results reveal that demonstrating improved efficiency of high‐order methods is a challenging task and that optimal computational complexity of solvers and preconditioners as well as matrix‐free implementations are necessary ingredients in achieving the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor‐Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern cache‐based computer architectures achieving a throughput for operator evaluation of 3·108 up to 1·109 DoFs/s (degrees of freedom per second) on one Intel Haswell node with 28 cores. Compared to performance results published within the last five years for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup. 相似文献
3.
The combination of a high‐order unstructured spectral difference (SD) spatial discretization scheme with sub‐grid scale (SGS) modeling for large‐eddy simulation is investigated with particular focus on the consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order led to the development of a new class of three‐dimensional constrained discrete filters. The discrete filters satisfy a set of selected criteria and are completely local within the SD element. Their weights can be automatically computed at run time from the number of solution points within each element and the expected filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit filtering and to a broad class of high‐order discontinuous finite element numerical schemes. The code is applied to the computation of turbulent channel flows at three Reynolds numbers, namely Reτ = 180, 395, and 590 (based on the friction velocity uτ and channel half‐width δ). Results from computations with and without the SGS model are compared against results from direct numerical simulation. The numerical experiments suggest that the results are sensitive to the use of the SGS model, even when a high‐order numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution over lower‐order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS interactions, confirming that its well‐known potential can be realized in conjunction with state‐of‐the‐art high‐order numerical schemes.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Coupled Navier–Stokes—Molecular dynamics simulations using a multi‐physics flow simulation framework
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Developing a hybrid flux function suitable for hypersonic flow simulation with high‐order methods 下载免费PDF全文
In this paper, we develop a new hybrid Euler flux function based on Roe's flux difference scheme, which is free from shock instability and still preserves the accuracy and efficiency of Roe's flux scheme. For computational cost, only 5% extra CPU time is required compared with Roe's FDS. In hypersonic flow simulation with high‐order methods, the hybrid flux function would automatically switch to the Rusanov flux function near shock waves to improve the robustness, and in smooth regions, Roe's FDS would be recovered so that the advantages of high‐order methods can be maintained. Multidimensional dissipation is introduced to eliminate the adverse effects caused by flux function switching and further enhance the robustness of shock‐capturing, especially when the shock waves are not aligned with grids. A series of tests shows that this new hybrid flux function with a high‐order weighted compact nonlinear scheme is not only robust for shock‐capturing but also accurate for hypersonic heat transfer prediction. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
The problem of flow and heat transfer associated with a spherical droplet accelerated from rest under gravitational force is studied using a Legendre‐spectral element method in conjunction with a mixed time integration procedure to advance the solution in time. An influence matrix technique that exploits the superposition principle is adapted to resolve the lack of vorticity boundary conditions and to decouple the equations from the interfacial couplings. The computed flow and temperature fields, the drag coefficient, the Nusselt number, and the interfacial velocity and vorticity are presented for a drop moving vertically in a quiescent gas of infinite extent to illustrate the evolution of the flow and temperature fields. Comparison of the predicted drag coefficient and the Nusselt number against previous numerical and experimental results indicate good agreement. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
7.
针对高维及多物理耦合计算耗费大等困难,设计适合多介质流动模拟的模板紧致、易于并行、高阶精度、计算耗费小的谱体积方法。该方法是求解双曲型守恒率谱体积方法的直接推广,针对多介质流动物质界面捕捉的困难,利用拟守恒格式的思想避免物质界面处的非物理振荡。数值模拟结果表明,本方法具有高阶精度、高分辨率,且节约计算量,并且可以有效避免物质界面处非物理振荡。 相似文献
8.
Classical semi‐implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes equations induce, for high‐Reynolds number flows, severe restrictions on the time step. Such restrictions can be relaxed by using semi‐Lagrangian schemes essentially based on splitting the full problem into an explicit transport step and an implicit diffusion step. In comparison with the standard characteristics method, the semi‐Lagrangian method has the advantage of being much less CPU time consuming where spectral methods are concerned. This paper is devoted to the comparison of the ‘semi‐implicit’ and ‘semi‐Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical results on the advection equation, Burger's equation and finally two‐ and three‐dimensional Navier–Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
A hybrid particle‐mesh method was developed for efficient and accurate simulations of two‐phase flows. In this method, the main component of the flow is solved using the constrained interpolated profile/multi‐moment finite volumemethod; the two‐phase interface is rendered using the finite volume particle (FVP) method. The effect of surface tension is evaluated using the continuum surface force model. Numerical particles in the FVP method are distributed only on the surface of the liquid in simulating the interface between liquid and gas; these particles are used to determine the density of each mesh grid. An artificial term was also introduced to mitigate particle clustering in the direction of maximum compression and sparse discretization errors in the stretched direction. This enables accurate interface tracking without diminishing numerical efficiency. Two benchmark simulations are used to demonstrate the validity of the method developed and its numerical stability. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
Rajat Mittal 《国际流体数值方法杂志》1999,30(7):921-937
An accurate Fourier–Chebyshev spectral collocation method has been developed for simulating flow past prolate spheroids. The incompressible Navier–Stokes equations are transformed to the prolate spheroidal co‐ordinate system and discretized on an orthogonal body fitted mesh. The infinite flow domain is truncated to a finite extent and a Chebyshev discretization is used in the wall‐normal direction. The azimuthal direction is periodic and a conventional Fourier expansion is used in this direction. The other wall‐tangential direction requires special treatment and a restricted Fourier expansion that satisfies the parity conditions across the poles is used. Issues including spatial and temporal discretization, efficient inversion of the pressure Poisson equation, outflow boundary condition and stability restriction at the pole are discussed. The solver has been validated primarily by simulating steady and unsteady flow past a sphere at various Reynolds numbers and comparing key quantities with corresponding data from experiments and other numerical simulations. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
11.
Wall modeling via function enrichment within a high‐order DG method for RANS simulations of incompressible flow 下载免费PDF全文
We present a novel approach to wall modeling for the Reynolds‐averaged Navier‐Stokes equations within the discontinuous Galerkin method. Wall functions are not used to prescribe boundary conditions as usual, but they are built into the function space of the numerical method as a local enrichment, in addition to the standard polynomial component. The Galerkin method then automatically finds the optimal solution among all shape functions available. This idea is fully consistent and gives the wall model vast flexibility in separated boundary layers or high adverse pressure gradients. The wall model is implemented in a high‐order discontinuous Galerkin solver for incompressible flow complemented by the Spalart‐Allmaras closure model. As benchmark examples, we present turbulent channel flow starting from Reτ=180 and up to Reτ=100000 as well as flow past periodic hills at Reynolds numbers based on the hill height of ReH=10595 and ReH=19000. 相似文献
12.
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems. 相似文献
13.
Charalampos Kouris Yannis Dimakopoulos Georgios Georgiou John Tsamopoulos 《国际流体数值方法杂志》2002,39(1):41-73
A Galerkin/finite element and a pseudo‐spectral method, in conjunction with the primitive (velocity‐pressure) and streamfunction‐vorticity formulations, are tested for solving the two‐phase flow in a tube, which has a periodically varying, circular cross section. Two immiscible, incompressible, Newtonian fluids are arranged so that one of them is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). The physical and flow parameters are such that the interface between the two fluids remains continuous and single‐valued. This arrangement is usually referred to as Core‐Annular flow. A non‐orthogonal mapping is used to transform the uneven tube shape and the unknown, time dependent interface to fixed, cylindrical surfaces. With both methods and formulations, steady states are calculated first using the Newton–Raphson method. The most dangerous eigenvalues of the related linear stability problem are calculated using the Arnoldi method, and dynamic simulations are carried out using the implicit Euler method. It is shown that with a smooth tube shape the pseudo‐spectral method exhibits exponential convergence, whereas the finite element method exhibits algebraic convergence, albeit of higher order than expected from the relevant theory. Thus the former method, especially when coupled with the streamfunction‐vorticity formulation, is much more efficient. The finite element method becomes more advantageous when the tube shape contains a cusp, in which case the convergence rate of the pseudo‐spectral method deteriorates exhibiting algebraic convergence with the number of the axial spectral modes, whereas the convergence rate of the finite element method remains unaffected. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
14.
This paper is devoted to the development of a parallel, spectral and second‐order time‐accurate method for solving the incompressible and variable density Navier–Stokes equations. The method is well suited for finite thickness density layers and is very efficient, especially for three‐dimensional computations. It is based on an exact projection technique. To enforce incompressibility, for a non‐homogeneous fluid, the pressure is computed using an iterative algorithm. A complete study of the convergence properties of this algorithm is done for different density variations. Numerical simulations showing, qualitatively, the capabilities of the developed Navier–Stokes solver for many realistic problems are presented. The numerical procedure is also validated quantitatively by reproducing growth rates from the linear instability theory in a three‐dimensional direct numerical simulation of an unstable, non‐homogeneous, flow configuration. It is also shown that, even in a turbulent flow, the spectral accuracy is recovered. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
The performance of parallel subdomain method with overlapping is analysed in the case of the 3D coupled boundary‐value problem of continuous flow electrophoresis which is governed by Navier–Stokes equations coupled with convection–diffusion and potential equations. Convergence of parallel synchronous and asynchronous iterative algorithms is studied. Comparison between implemented explicit and implicit schemes for the transport equation is made using these algorithms and shows that both methods provide similar results and comparable performances. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
Practical aspects of p‐multigrid discontinuous Galerkin solver for steady and unsteady RANS simulations 下载免费PDF全文
Efficient and robust p‐multigrid solvers are presented for solving the system arising from high‐order discontinuous Galerkin discretizations of the compressible Reynolds‐Averaged Navier–Stokes (RANS) equations. Two types of multigrid methods and a multigrid preconditioned Newton–Krylov method are investigated, and both steady and unsteady algorithms are considered in this paper. For steady algorithms, a new strategy is introduced to determine the CFL number, which has been proved to be critical in achieving the effective and stable convergence for p‐multigrid methods. We also suggest a modified smoothing technique to further improve the efficiency of the algorithms. For unsteady algorithms, special attention has been paid to the cycling strategy and the full multigrid technique, and we point out a significant difference on the parameter selection for unsteady computations. The capabilities of the resulted solvers have been examined by performing steady and unsteady RANS simulations. Comparative assessment in terms of efficiency, robustness, and memory consumption are carried out for all solvers. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
An improved high‐order accurate WENO finite volume method based on unstructured grids for compressible multi‐fluids flow is proposed in this paper. The third‐order accuracy WENO finite volume method based on triangle cell is used to discretize the governing equations. To have higher order of accuracy, the P1 polynomial is reconstructed firstly. After that, the P2 polynomial is reconstructed from the combination of the P1. The reconstructed coefficients are calculated by analytical form of inverse matrix rather than the numerical inversion. This greatly improved the efficiency and the robustness. Four examples are presented to examine this algorithm. Numerical results show that there is no spurious oscillation of velocity and pressure across the interface and high‐order accurate result can be achieved. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Zuo‐Bing Wu 《国际流体数值方法杂志》2009,61(5):536-551
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4 :2244–2251; Int. J. Multiphase Flow 2000; 26 :1583–1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
A spectral quadrilateral multidomain penalty method model for high Reynolds number incompressible stratified flows 下载免费PDF全文
A two‐dimensional quadrilateral spectral multidomain penalty method (SMPM) model has been developed for the simulation of high Reynolds number incompressible stratified flows. The implementation of higher‐order quadrilateral subdomains renders this model a nontrivial extension of a one‐dimensional subdomain SMPM model built for the simulation of the same type of flows in vertically nonperiodic domains (Diamessis et al., J. Comp. Phys, 202 :298‐322, 2005). The nontrivial aspects of this extension consist of the implementation of subdomain corners, the penalty formulation of the pressure Poisson equation (PPE), and, most importantly, the treatment of specific challenges that arise in the iterative solution of the SMPM‐discretized PPE. The two primary challenges within the framework of the iterative solution of the PPE are its regularization to ensure the consistency of the associated linear system of equations and the design of an appropriate two‐level preconditioner. A qualitative and quantitative assessment of the accuracy, efficiency, and stability of the quadrilateral SMPM solver is provided through its application to the standard benchmarks of the Taylor vortex, lid‐driven cavity, and double shear layer. The capacity of the flow solver for the study of environmental stratified flow processes is shown through the simulation of long‐distance propagation of an internal solitary wave of depression in a manner that is free of numerical dispersion and dissipation. The methods and results presented in this paper make it a point of reference for future studies oriented toward the reliable application of the quadrilateral SMPM model to more complex environmental stratified flow process studies. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
From h to p efficiently: optimal implementation strategies for explicit time‐dependent problems using the spectral/hp element method 下载免费PDF全文
We investigate the relative performance of a second‐order Adams–Bashforth scheme and second‐order and fourth‐order Runge–Kutta schemes when time stepping a 2D linear advection problem discretised using a spectral/hp element technique for a range of different mesh sizes and polynomial orders. Numerical experiments explore the effects of short (two wavelengths) and long (32 wavelengths) time integration for sets of uniform and non‐uniform meshes. The choice of time‐integration scheme and discretisation together fixes a CFL limit that imposes a restriction on the maximum time step, which can be taken to ensure numerical stability. The number of steps, together with the order of the scheme, affects not only the runtime but also the accuracy of the solution. Through numerical experiments, we systematically highlight the relative effects of spatial resolution and choice of time integration on performance and provide general guidelines on how best to achieve the minimal execution time in order to obtain a prescribed solution accuracy. The significant role played by higher polynomial orders in reducing CPU time while preserving accuracy becomes more evident, especially for uniform meshes, compared with what has been typically considered when studying this type of problem.© 2014. The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd. 相似文献