首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three novel copper(II) complex [Cu2(bpa)(μ‐PhCO2)](ClO4)2 ( 1 ), [Cu2(bpa) (μ‐pyz)](ClO4)2 ( 2 ), and [Cu(Hbpa)](ClO4)2·2CH3CN ( 3 ) have been synthesized by the reaction of Hbpa with Cu(ClO4)2·6H2O in the presence and absence of exogenous ligands (where Hbpa = N, N'‐bis(picolinidene‐N‐oxide)‐2‐hydroxy‐1, 3‐diamino‐propane). Molecular structures of these compounds have been elucidated by single crystal X‐ray diffraction. 1 and 2 are both binuclear complexes in which two copper atoms are linked by the endogenous alkoxide oxygen and the exogenous benzoate and pyrazolate ligands, respectively. 3 consists of a one‐dimensional polymeric structure, in which Hbpa functions as a bridging mode.  相似文献   

2.
The reaction of dinuclear copper(II ) cryptates with calcium cyanamide, CaNCN, and sodium dicyanamide, Na[N(CN)2] results in dinuclear compounds of formulae [Cu2(HNCN)(R3Bm)](ClO4)3 ( 1 ), [Cu2(dca)(R3Bm)](ClO4)3?4H2O ( 2 ), and [Cu2(NCNCONH2)(R3Bm)](CF3SO3)3 ( 3 ), in which R3Bm=N[(CH2)2NHCH2(C6H4m)CH2NH(CH2)2]3N and dca=dicyanamido ligand (NCNCN?). The X‐ray diffraction analysis reveals for both 1 and 3 a dinuclear entity in which the copper atoms are bridged by means of the ‐NCN‐ unit. The molar magnetic susceptibility measurements of 1–3 in the 2–300 K range indicate ferromagnetic coupling. The calculated J values, by using theoretical methods based on density functional theory (DFT) are in excellent agreement with the experimental data. Catalytic hydration of a nitrile to an amide functional group is assumed responsible for the formation of 3 from a μ1,3‐dicyanamido ligand.  相似文献   

3.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry.  相似文献   

4.
X‐ray photoelectron spectral study was made on the complexes Ni(nmedtc)2( 1 ), [Ni(nmedtc)(PPh3)2]ClO4( 2 ), [Ni‐(nmedtc)(dppe)]BPh4( 3 ) (where nmedtc = N‐methyl, N‐ethanoldithiocarbamate, dppe = 1, 2‐bis(diphenylphosphino)ethane). The nickel 2p3/2 binding energy values for chelated and free phosphine complexes are 854.0 and 854.1 eV which are significantly different from Ni2p3/2 BE value of NiS4 chromophore, indicating the relative dearth of electron density on Ni in NiS2P2 chromophores. The presence of two phosphine groups in NiS2P2 chromophore alleviates the electron density on the metal atom. More electron density is being pulled away from the metal atom in chelates than in the PPh3 analogue. This observation is in line with solution studies by cyclic voltammetry. A one‐electron reduction potential was observed to be the minimum for NiS2P2 chromophores compared to the others. Also the crystal structure of the complex [Ni(pipdtc)(1, 4‐dppb)]ClO4 (pipdtc = piperidinecarbodithioato anion, 1, 4‐dppb = bis(diphenylphosphino)butane) prepared by the reaction between Ni(pipdtc)2, NiCl2�622O, and 1, 4‐dppb in CH3CN‐CH3OH is reported.  相似文献   

5.
A new family of nickel(II) complexes of the type [Ni(L)(CH3CN)](BPh4)2, where L=N‐methyl‐N,N′,N′‐tris(pyrid‐2‐ylmethyl)‐ethylenediamine (L1, 1 ), N‐benzyl‐N,N′,N′‐tris(pyrid‐2‐yl‐methyl)‐ethylenediamine (L2, 2 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(6‐methyl‐pyrid‐2‐yl‐methyl)‐ethylenediamine (L3, 3 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(quinolin‐2‐ylmethyl)‐ethylenediamine (L4, 4 ), and N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐imidazole‐2‐ylmethyl)‐ethylenediamine (L5, 5 ), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single‐crystal X‐ray structure of [Ni(L3)(CH3CN)](BPh4)2 reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one‐electron oxidation corresponding to the NiII/NiIII redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m‐CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1–10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH3CN)](BPh4)2 by the strongly σ‐bonding but weakly π‐bonding imidazolylmethyl arm as in [Ni(L5)(CH3CN)](BPh4)2 or the sterically demanding 6‐methylpyridylmethyl ([Ni(L3)(CH3CN)](BPh4)2 and the quinolylmethyl arms ([Ni(L4)(CH3CN)](BPh4)2, both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin‐state reactivity for the high‐spin [(N5)NiII?O.] intermediate (ts1hs, ts2doublet), which has a low‐spin state located closely in energy to the high‐spin state. The lower catalytic activity of complex 5 is mainly due to the formation of thermodynamically less accessible m‐CPBA‐coordinated precursor of [NiII(L5)(OOCOC6H4Cl)]+ ( 5 a ). Adamantane is oxidized to 1‐adamantanol, 2‐adamantanol, and 2‐adamantanone (3°/2°, 10.6–11.5), and cumene is selectively oxidized to 2‐phenyl‐2‐propanol. The incorporation of sterically hindering pyridylmethyl and quinolylmethyl donor ligands around the NiII leads to a high 3°/2° bond selectivity for adamantane oxidation, which is in contrast to the lower cyclohexane oxidation activities of the complexes.  相似文献   

6.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

7.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

8.
Various arylboronic acids reacted with activated alkenes in the presence of [Ni(dppe)Br2], ZnCl2, and H2O in CH3CN at 80 °C to give the corresponding Mizoroki–Heck‐type addition products in good to excellent yields. Furthermore, 1 equivalent of the hydrogenation product of the activated alkene was also produced. By tuning the ligands of the nickel complexes and the reaction conditions, Michael‐type addition was achieved in a very selective manner. Thus, various p‐ and o‐substituted arylboronic acids or alkenylboronic acid reacted smoothly with activated alkenes in CH3CN at 80 °C for 12 h catalyzed by Ni(acac)2, P(o‐anisyl)3, and K2CO3 to give the corresponding Michael‐type addition products in excellent yields. However, for m‐substituted arylboronic acids, the yields of Michael‐type addition products are very low. The cause of this unusual meta‐substitution effect is not clear. By altering the solvent or phosphine ligand, the product yields for m‐substituted arylboronic acids were greatly improved. In contrast to previous results in the literature, the present catalytic reactions required water for Mizoroki–Heck‐type products and dry reaction conditions for Michael‐type addition products. Possible mechanistic pathways for both addition reactions are proposed.  相似文献   

9.
A copper(II) and two nickel(II) dinuclear oxalato‐bridged compounds of formulae [{Cu(bpdto)}2(μ‐ox)](ClO4)2 ( 1 ), [{Ni(bpdto)]2(μ‐ox)](ClO4)2( 2 ), and [{Ni(bpdto)}2(μ‐ox)](NO3)2·2H2O ( 3 ), where bpdto = 1, 8‐bis(2‐pyridyl)‐3, 6‐dithiaoctane and ox = oxalate = C2O42— anion, have been synthesized and characterized. The crystal structure of 3 was determined by single‐crystal X‐ray analysis. It is a dinuclear complex with i symmetry in which the oxalate ligand is coordinated in bis(didentate) fashion to the inversion centre‐related nickel atoms. The distorted octahedral environment of each nickel atom is completed by two sulphur atoms in the equatorial plane and by two pyridyl nitrogen atoms in axial positions. Magnetic susceptibility measurements over the range 5 — 299K, show antiferromagnetic interactions that are weak in 1 (J = —12.8 cm—1) and strong in 2 and 3 (J = —37.8 and —40.9 cm—1, respectively), which in the case of 3 is in keeping with the observed structural parameters.  相似文献   

10.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

11.
Synthesis, spectral and cyclic voltammetric characterization of [Ni(dedtc)(4‐MP)2](ClO4) ( 1 ), [Ni(dedtc)(4‐MP)(NCS)]( 2 ), [Ni(dedtc)(PPh3)(NCS)] ( 3 ) and [Ni(dedtc)(PPh3)(CN)] ( 4 ) (dedtc = diethyldithiocarbamate, 4‐MP = tri(4‐methylphenyl)phosphine, PPh3 = triphenylphophine) are reported. IR spectra of complexes 1‐4 show the characteristic thioureide (C‐N) bands at higher wave numbers compared to that of the parent dithiocarbamate complex [Ni(dedtc)2]. The d‐d transitions are observed in the region 452—482 nm. The CV studies clearly show the presence of reduced electron density on the nickel ions in mixed ligand complexes 1‐4 compared to the parent dithiocarbamate. Single crystal X‐ray structure studies show all the complexes to containplanar NiS2P2, NiS2PN, and NiS2PC chromophores in keeping with the observed diamagnetism. In all the complexes the Ni‐S distances are asymmetric. The thioureide C‐N distance of the complexes 1‐4 are less thanthe C‐N distance observed in the parent [Ni(dedtc)2].  相似文献   

12.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

13.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

14.
A new nickel(II) complex, {[Ni(cyclam)(μ‐1,5‐dca)]ClO4·[(CH3)2CO]}n (1), (cyclam = 1, 4, 8, 11‐tetraazacyclotetradecane, dca = dicyanamide, N(CN)2) has been synthesized and structurally characterized. The complex crystallizes in orthorhombic system, space group Pnma; with a = 9.1958(15) Å, b = 15.528(3) Å, c = 16.335(3) Å and Z = 4. According to X‐ray crystallographic studies, 1 is a one‐dimensional zig‐zag infinite chain complex which consists of alternately single μ‐1,5‐dca linked the nickel atoms. The IR and UV spectroscopy were measured. The absorption bands of d–d electron transition are assigned and the values of Dq and B were calculated according to the electronic spectrum of the complex. The magnetic property studies indicate that complex 1 exhibits weak antiferromagnetic interaction through the five‐atom [NCNCN] bridging ligands with J = –0.382 cm−1.  相似文献   

15.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

16.
Crystallization of [Cd(S‐thpc12)](ClO4)2·H2O {S‐thpc12 is 1,4,7,10‐tetrakis­[(S)‐2‐hydroxy­propyl]‐1,4,7,10‐tetra­aza­cyclo­do­decane} in the presence of two equivalents of sodium picrate monohydrate (sodium 2,4,6‐tri­nitro­phenolate monohydrate) diastereoselectively produces a neutral receptor complex, viz. the title compound, Λ‐[Cd(C20H44N4O4)](C6H2N3O7)2·CH3CN. In this complex, two picrate anions hydrogen bond, via their phenolate moieties, to the pendant hydroxyl groups of the receptor which, together with the four N atoms, themselves bond to CdII in an approximately cubic arrangement. One picrate anion hydrogen bonds to all four hydroxyl groups, one of which also acts as the sole hydrogen‐bond donor to the second picrate anion.  相似文献   

17.
Two copper(I)‐based frameworks of complexes {[Cu(L)2(ClO4)]?CH3CN}( 2 ) and {[Cu(L)(ClO4)]? 2CH3CN} ( 3 ) (L = 1,3,5‐tris(4‐pyridylethynyl) benzene) were produced by reacting [Cu(MeCN)4(ClO4)] with different amounts of a ligand (L) using a hydrothermal method at temperatures of up to 130°C. The nitrogen atoms in the pyridine moieties of the ligand coordinate to the Cu(I) ion. The charge on the Cu(I) ion can be stabilized by extending the degree of conjugation in the system and by taking advantage of its highly symmetrical structure. The large degree of conjugation also supports numerous π–π interactions in the framework.  相似文献   

18.
We set out studies on anion‐ and solvent‐induced assembly based on the ligand N‐(4‐(4‐aminophenyloxy)phenyl)isonicotinamide (papoa), which is synthesized to show a bent and flexible backbone. Reactions of papoa with ZnX2 (X=Cl, Br, and I) gave the dinuclear macrocycles ([ZnX2(papoa)]2; X=Cl ( 1 a ), Br ( 2 a ), I ( 3 )), the structure of which was determined by X‐ray diffraction. Notably, the less bulky Cl and Br compounds afforded the coordinated imine in acetone (i.e., [ZnX2(papoi)]2, papoi=N‐(4‐(4‐(propan‐2‐ylideneamino)phenoxy)phenyl)isonicotinamide; X=Cl ( 1 b ), Br ( 2 b )), whereas the iodine one only gave the coordinated amine compound 3 under the same reaction condition. In fact, the coordinated imine can return to the amine analogue upon exposure to air or in DMSO, which has been monitored by 1H NMR spectroscopy and powder X‐ray diffraction. Both the dinuclear [Zn(papoa)(NO3)2]2 ( 4 a ) and the 1D [Zn(papoa)2(NO3)2]n ( 4 b ) were formed from the reaction of Zn(NO3)2 and papoa in mixed solvents with acetone and acetonitrile, respectively. In addition, Cd(ClO4)2 can react with papoa to give the 1D framework {[Cd(papoa)2(CH3CN)2](ClO4)2}n ( 5 a ) and the 2D framework [Cd(papoa)2(ClO4)2]n ( 5 b ), depending on the solvent used, that is, MeOH and CH3CN, respectively. Importantly, the 1D framework with axially coordinated CH3CN molecules and the 2D framework with axially coordinated ClO4? ions can be interconverted by heating and grinding in the presence of CH3CN, respectively. Such a reversible structural transformation process was proven by PXRD studies.  相似文献   

19.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Two new complexes [Cu(dafo)2(en)](ClO4)2·2H2O (en=NH2CH2CH2NH2) 1 and [Cu(dafo)2(dap)](ClO4)2·2H2O [dap=NH2CH2CH(CH3)NH2] 2 (dafo=4,5-diazafluoren-9-one) have been synthesized and characterized by elemental analysis, IR and UV spectra. Meanwhile, the complex 1 has been characterized by single crystal X-ray diffraction analysis. The initial DNA binding interactions of the complexes 1 and 2 have been investigated by UV spectra, emission spectra and cyclic voltammogram. Concluding the results of three methods used to measure the interaction of complexes 1 and 2 with DNA, the action mode of the two complexes with DNA is intercalation, and character of ligands and steric effect may affect the interaction of the complexes with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号