首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Khan R  Gorski W  Garcia CD 《Electroanalysis》2011,23(10):2357-2363
The amperometric glutamate biosensor based on screen-printed electrodes containing carbon nanotubes (CNT), and its integration in a flow injection analysis system, is described herein. The sensor was fabricated by simply adsorbing enzyme glutamate oxidase (GlutOx) on a commercial substrate containing multi-wall CNT. The resulting device displayed excellent electroanalytical properties toward the determination of L-glutamate in a wide linear range (0.01-10 μM) with low detection limit (10 nM, S/N≥3), fast response time (≤5 s), and good operational and long-term stability. The CNT modified screen-printed electrodes have a potential to be of general interest for designing of electrochemical sensors and biosensors.  相似文献   

2.
Nanocomposite film comprising of polyaniline (PANI) and single walled carbon nanotubes (SWCNT) has been fabricated onto indium‐tin‐oxide (ITO) coated glass plate using electrophoretic technique. Co‐immobilization of glycerol dehydrogenase (GDH) and lipase (LIP) has been done via N‐ethyl‐N′‐(3‐dimethylaminopropyl) carbodiimide and N‐hydroxysuccinimide chemistry to explore its application for triglyceride (tributyrin) sensing. Response studies have been done using linear sweep voltammetry revealing that LIP‐GDH/PANI‐SWCNT‐TB/ITO bioelectrode can detect tributyrin in the range of 50 to 400 mg dL?1 with low Michaelis–Menten constant of 1.138 mM, improved response time of 12 s, high sensitivity as 4.28×10?4 mA mg?1 dL and storage stability of about 13 weeks.  相似文献   

3.
《Electroanalysis》2006,18(15):1471-1478
In this paper, we present an electrochemical impedance‐based DNA biosensor by using a composite material of polypyrrole (PPy) and multiwalled carbon nanotubes (MWNTs) to modify glassy carbon electrode (GCE). The polymer film was electropolymerized onto GCE by cyclic voltammetry (CV) in the presence of carboxylic groups ended MWNTs (MWNTs‐COOH). Such electrode modification method is new for DNA hybridization sensor. Amino group ended single‐stranded DNA (NH2‐ssDNA) probe was linked onto the PPy/MWNTs‐COOH/GCE by using EDAC, a widely used water‐soluble carbodiimide for crosslinking amine and carboxylic acid group. The hybridization reaction of this ssDNA/PPy/MWNTs‐COOH/GCE resulted in a decreased impedance, which was attributed to the lower electronic transfer resistance of double‐stranded DNA than single‐stranded DNA. As the result of the PPy/MWNTs modification, the electrode obtained a good electronic transfer property and a large specific surface area. Consequently, the sensitivity and selectivity of this sensor for biosensing DNA hybridization were improved. Complementary DNA sequence as low as 5.0×10?12 mol L?1 can be detected without using hybridization marker or intercalator. Additionally, it was found that the electropolymerization scan rate was an important factor for DNA biosensor fabrication. It has been optimized at 20 mV s?1.  相似文献   

4.
Glucose oxidase(GOD) was encapsulated in the Graphene/Nafion film modified glassy carbon electrode(GCE) and used as an ECL sensor for glucose. The GOD retains its bioactivity after being immobilized into the composite film. The sensor gives a linear response for glucose in the range of 2.0×10?6–1.0×10?4 mol/L with a detection limit of 1.0×10?6 mol/L. The sensor showed good stability, the RSD for continuous scanning for 5.0×10?5 mol/L glucose was 4.21 % (n=5). After being stored in 0.05 mol/L pH 7.4 PBS in 4 °C for two weeks, the modified electrode maintains 80 % of its initial activity. The glucose sensor provides new opportunity for clinical diagnosis applications.  相似文献   

5.
A sensitive hydrogen peroxide sensor based on horseradish peroxidase covalently attached to layered nonoriented MWNTs modified electrode is presented. Cyclic voltammetry results gave quasi‐reversible FeIII/FeII voltammetry. The electron transfer rate constant (ks) and Michaelis–Menten constant (KM) in pH 7 is 48.8±0.9 s?1 and 0.13±0.05 mM respectively. A linear calibration curve for hydrogen peroxide was obtained up to 120 nM under the optimized conditions with a remarkable detection limit of (S/N=3) 1.5 nM. Results suggest that the nonoriented nanotubes act as electrical conductors and may also provide large surface area facilitating facile electron transfer and excellent electrochemical catalysis.  相似文献   

6.
The high electrically conductive carboxyl‐functionalized multiwalled carbon nanotubes (COOH‐MWCNTs) were used to combine with nonconducting polyimide (PI) to generate a PI/COOH‐MWCNTs membrane. PI served as a matrix to entrap COOH‐MWCNTs and hemoglobin (Hb). COOH‐MWCNTs can improve the conductivity of the composite. The direct electrochemistry measurement indicated that the PI/COOH‐MWCNTs composite enhanced the immobilization of Hb significantly. Besides, the Hb/PI/COOH‐MWCNTs/GCE biosensor possessed excellent electrocatalytic activity for the detection of nitrite. Therefore, PI is a good matrix for Hb immobilization and it has application in sensor construction. This work is promising in the development of sensitive biosensors based on PI/COOH‐MWCNTs composite film.  相似文献   

7.
Enriched metallic single‐walled carbon nanotubes (mSWCNTs) were dispersed in aqueous solution of partially oxidized graphene (po‐Gr). As‐prepared po‐Gr/mSWCNTs suspension was used to modify glassy carbon electrode (GCE) surface, which showed high electrocatalytic activity for dopamine (DA) oxidation in pH 7.0 phosphate buffered saline (PBS) solution. Using po‐Gr/mSWCNTs/GCE we could detect DA from 350 to 3600 nM, with a detection limit down to 25 nM in physiological condition (in pH 7.0 PBS); whereas, po‐Gr/GCE (without mSWCNTs) and bare GCE produced measurable signals only at or above 200 nM DA. Thus, the po‐Gr/mSWCNTs film we fabricated is a promising nanomaterial for fabrication of biosensors for nanomolar detection of DA.  相似文献   

8.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

9.
在研究DNA与儿茶酚胺类分子之间相互作用的基础上, 以碳纤维电极(CFE)为基底, 制备了一种新型的DNA-过氧化聚吡咯(PPyox)生物复合膜传感器, 与单一的DNA或PPyox修饰层相比具有更高的灵敏度和选择性.  相似文献   

10.
一种基于碳纳米管的安培型过氧化氢生物传感器   总被引:6,自引:0,他引:6  
利用硫堇(th ion ine,Th i)作为介体结合多壁碳纳米管(MWNTs)、壳聚糖(ch itosan,CH IT)、辣根过氧化酶(HRP)的混合包埋物制作过氧化氢(H2O2)生物传感器。研究结果表明所得传感器对H2O2具有明显的增敏效应,线性范围为0.03~5.5 mmol/L,相关系数为0.9995;检出限为19μmol/L(S/N=3),具有良好的稳定性及工作寿命。  相似文献   

11.
The electrocatalytic oxidation of rapamycin, one of the most studied immunosuppressant, cancer-preventing drug, is investigated for the first time on the surface of the modified carbon paste electrode prepared by incorporating multi-walled carbon nanotubes (MWCNTs) and conductive polymer pyrrole using differential pulse voltammetry (DPV). Rapamycin exhibited a well-defined oxidation peak at +1.1 V (versus Ag/AgCl) in Briton Robinson buffer solution with a pH 4.0. Effect of the most important experimental parameters was optimized and obtained signals are linear to the concentration of rapamycin in the range from 0.1 to 20 μM with 0.06 μM limit of detection. The repeatability is calculated as ±2 % and the reproducibility as ±5 %. The possible interfering compounds were tested showing negligible effect and the sensor was successfully applied for the determination of rapamycin in commercial pharmaceutical formulations with obtained recoveries in the range from 98 % to 102 %.  相似文献   

12.
利用甲醛脱氢酶和羧基化多壁碳纳米管修饰的丝网印刷电极,制备了基于还原型辅酶Ⅰ检测的甲醛生物传感器,并优化了传感器的检测条件.结果表明,此传感器对甲醛有较好的电催化氧化作用,显著降低了甲醛的氧化峰电位.在0.001~11nmol/L范围内,响应电流与甲醛的浓度线性相关,其线性回归方程为z(μA)=0.944c(mmol/L,) +0.0623,相关系数为0.9934,响应时间约为20 s,检出限为0.2 μmol/L( S/ N=3).  相似文献   

13.
A sol–gel derived carbon ceramic biosensor was used for methomyl determination in vegetable extract samples based on the immobilization of laccase from Aspergillus oryzae. Esculetin was chosen as the substrate for laccase in order to measure inhibition by this pesticide. The analytical curve was linear for methomyl concentrations of 0.5 to 12.2 µM with a detection limit of 0.2 µM. The lifetime of the proposed biosensor was 60 days and the recovery from vegetable extract samples ranged from 98.0 to 104.2 %. The results using the proposed method are in agreement with those using HPLC at the 95 % confidence level.  相似文献   

14.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器。CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提高传感器的检测灵敏度。研究表明,将CNTs分散液与K3Fe(CN)6混合,滴涂修饰在Pt电极上,吸附固定胆碱氧化酶,制备传感器。此传感器在含有8×10-6mol/L鲁米诺的磷酸盐缓冲液(pH7.4)、30℃条件下产生的ECL强度与胆碱浓度在1×10-7~4×10-3mol/L范围内呈线性关系,相关系数为0.994,检出限为1.2×10-8 mol/L。此生物传感器应用于鼠血样中胆碱的测定,测得结果为2.68 mg/L,平均回收率为101.1%。传感器具有快速、稳定和重现性好等特点,有望应用于常规分析。  相似文献   

15.
《Electroanalysis》2018,30(5):910-920
A label‐free DNA biosensor based on magnetite/multiwalled carbon nanotubes/chitosan (Fe3O4/MWCNTs‐COOH/CS) nanomaterial for detection of Bacillus cereus DNA sequences was fabricated. Negatively charged DNA was electrostatically adsorbed onto materials by protonation of positively charged chitosan under acidic conditions. The electrode surface and hybridization process were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal conditions, the biosensor showed a good linear relationship between peak currents difference (ΔI) and logarithm of the target DNA concentration (Log C) ranging from 2.0×10−13 to 2.0×10−6 M with a detection limit of 2.0×10−15 M (signal/noise ratio of 3). The biosensor also revealed an excellent selectivity to three‐base, completely mismatched and completely matched DNA. This is a simple, fast and friendly method with a low detection limit for the detection of Bacillus cereus specific DNA compared with previously reported electrochemical DNA biosensor. Furthermore, the DNA biosensor may lead to the development of a technology for gold prospecting in the wild.  相似文献   

16.
Novel magnetic chitosan‐coated microspheres (MCMSs) were prepared by modifying carbon‐coated iron magnetic nanoparticles with chitosan. An amperometric dihydronicotinamide adenine dinucleotide (NADH) sensor was constructed based on immobilizing MCMS on the surface of a polythionine (PTH) modified glassy carbon electrode (GCE). The fabrication of MCMS/PTH film and its electrocatalytic effect on electrochemical oxidation of NADH were investigated by electrochemical impedance spectroscopy (EIS) and voltammetric methods. It was found that the resulting integrated films of PTH and MCMS exhibit high electrocatalytic response to NADH by significantly reduce its overpotential. The effects of the experimental variables on the amperometric determination of NADH such as solution pH and working potential were investigated for optimum analytical performance. This electrochemical sensor had a fast response to NADH which was less than 10 s. Linear response ranges of 2–10 μM and 10–100 μM and a detection limit of 0.51 μM (S/N=3) were obtained under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor was evaluated with satisfactory results.  相似文献   

17.
基于农药乐果对乙酰胆碱酯酶的抑制作用,构建生物传感器,实现了农药乐果的快速、高灵敏检测。合成了纳米材料铂/碳球(Pt/Cs),利用其比表面积大、导电性好的优势,构建乙酰胆碱酯酶(ACh E)传感器。铂/碳球修饰电极比裸电极的阻抗更低,峰电流增加了147.06%,说明该材料能很好地保持酶的催化活性。在最优实验条件下,用ACh E传感器检测农药乐果,在1.0×10~(-9)~1.0×10~(-6)g/L范围,乐果浓度的负对数与抑制率呈良好的线性关系,其检出限为7.3×10~(-12)g/L(按抑制率为10%计算)。对纺织品样品进行加标回收实验,测得回收率为86.2%~101.7%。  相似文献   

18.
Amperometric enzymatic biosensors have high selectivity and simplicity in use. It has advantages over other analytical methods in biochemistry, pharmacology, so it evokes strong interests1,2. Generally, the detection mode involved in oxidase based biosensors is often based on the electrochemical detection of hydrogen peroxide directly3,4. However the direct oxidation of hydrogen peroxide requires a relative high working potential (exceeding ca. 0.6 V vs. SCE), at which many biological sub…  相似文献   

19.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   

20.
通过电沉积金属铜于单壁碳纳米管( SWNTs)/Nafion 修饰的玻碳电极表面构建了一种经济且制备简单的多巴胺传感器。该纳米材料的形貌和成分用扫描电镜和能谱仪表征。不同扫速和pH条件下,以其修饰玻碳电极构建的电化学体系受吸附控制。多巴胺在该电极表面的反应机理为两电子双质子的过程,电荷转移系数α=0.6,电子转移数n=2.67,异相电子转移速率ks=1.38 s-1。在优化条件下,用微分脉冲伏安法检测多巴胺的线性方程为Ipa(μA)=-0.054c(μmol/L)-3.82(R2=0.9988),线性范围5~100μmol/L,检出限为0.014μmol/L(S/N=3)。此传感器制备简单、成本低、灵敏性高、稳定性好、重现性好,检测人尿液中多巴胺的回收率为96.5%~100.4%,相对标准偏差为1.2%~2.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号