共查询到20条相似文献,搜索用时 15 毫秒
1.
Hoda Ilkhani Majid Arvand Mohammad Reza Ganjali Giovanna Marrazza Marco Mascini 《Electroanalysis》2013,25(2):507-514
The aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS). 相似文献
2.
Graciela Martínez‐Paredes María Begoña González‐García Agustín Costa‐García 《Electroanalysis》2009,21(8):925-930
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility. 相似文献
3.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions. 相似文献
4.
合成了聚苯胺纳米纤维,直径在50~70 nm之间;基于静电作用构建聚苯胺纳米纤维-纳米金复合膜界面,并在此界面上层层组装修饰叶酸分子,构建叶酸功能化传感界面,基于叶酸分子与癌细胞表面过量表达的叶酸受体之间的特异性识别作用,将此传感界面应用于对癌细胞的识别和捕获。结果表明:叶酸功能化传感界面能够特异性识别和捕获叶酸受体过量表达的癌细胞。采用电化学阻抗技术,以HeLa细胞为模型,应用于对癌细胞的识别和检测,细胞在1.0×104~6.4×106cells/mL浓度范围内与阻抗变化值ΔRct呈良好的线性关系;检出限为2000 cells/mL。本方法简单、快速灵敏、重现性和稳定性良好;制备的传感器可以再生使用。 相似文献
5.
Jude Lakbub Antibe Pouliwe Alexander Kamasah Cheng Yang Peng Sun 《Electroanalysis》2011,23(10):2270-2274
In this paper, the electrochemical behaviors of a single gold nanoparticle attached on a nanometer sized electrode have been studied. The single nanoparticle was characterized by using electrochemical methods. Since there is only one nanoparticle on the electrode, unarguable information for that sized particle could be obtained. Our preliminary results show that it becomes more difficult to oxidize gold nanoparticle or reduce gold nanoparticle oxide as the radius of the particle becomes smaller. Also, the peak potential of the reduction of gold nanoparticle oxide is proportional to the reciprocal of the radius of the particle. 相似文献
6.
Electrochemical Morphine Sensor Based on Gold Nanoparticles Metalphthalocyanine Modified Carbon Paste Electrode 下载免费PDF全文
Composites of gold nanoparticles (Au) electrochemically deposited and different metal phthalocyanines (Co, Ni, Cu, and Fe) were chemically prepared. The composites were used as modifiers for carbon paste electrodes and were used for the determination of morphine in presence of ascorbic acid and uric acid. Central metal atoms of phthalocyanine moiety affected the rate of electron transfer. Thus, the electroactivity of different modifiers were evaluated towards morphine oxidation. Au‐CoPcM‐CPE possessed the highest rate for charge transfer rate in all studied pH electrolytes. Limit of detection was 5.48×10?9 mol L?1 in the range of 4.0×10?7 to 9.0×10?4 mol L?1. 相似文献
7.
8.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results. 相似文献
9.
Label‐Free Electrochemical Aptasensor for Determination of Chloramphenicol Based on Gold Nanocubes‐Modified Screen‐Printed Gold Electrode 下载免费PDF全文
Ayemeh Bagheri Hashkavayi Jahan Bakhsh Raoof Reza Ojani Ezat Hamidi Asl 《Electroanalysis》2015,27(6):1449-1456
An ultrasensitive label‐free electrochemical aptasensor was developed for selective detection of chloramphenicol (CAP). The aptasensor was made using screen‐printed gold electrode modified with synthesized gold nanocube/cysteine. The interactions of CAP with aptamer were studied by cyclic voltammetry, square wave voltammetry (SWV) and electrochemical impedance spectroscopy. Under optimized conditions, two linear calibration curves were obtained for CAP determination using SWV technique, from 0.03 to 0.10 µM and 0.25–6.0 µM with a detection limit of 4.0 nM. The aptasensor has the advantages of good selectivity and stability and applied to the determination of CAP in human blood serum sample. 相似文献
10.
In this work, we report on the preparation of a simple, sensitive DNA impedance sensor. Firstly gold nanoparticles were electrodeposited on the surface of a gold electrode, and then probe DNA was immobilized on the surface of gold nanoparticles through a 5′‐thiol‐linker. Electrochemical impedance spectroscopy (EIS) was used to investigate probe DNA immobilization and hybridization. Compared to the bare gold electrode, the gold nanoparticles modified electrode could improve the density of probe DNA attachment and the sensitivity of DNA sensor greatly. The difference of electron transfer resistance (ΔRet) was linear with the logarithm of complementary oligonucleotides sequence concentrations in the range of 2.0×10?12 to 9.0×10?8 M, and the detection limit was 6.7×10?13 M. In addition, the DNA sensor showed a fairly good reproducibility and stability during repeated regeneration and hybridization cycles. 相似文献
11.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA. 相似文献
12.
Stripping Analysis of As(III) by Means of Screen‐Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite 下载免费PDF全文
Stefano Cinti Sara Politi Danila Moscone Giuseppe Palleschi Fabiana Arduini 《Electroanalysis》2014,26(5):931-939
A novel sensor based on carbon black‐gold nanoparticle nanocomposite modified screen‐printed electrode (CB‐AuNPs/SPE) for the detection of As(III) has been developed. The sensor was prepared modifying the SPE with CB and AuNPs by a drop casting automatable deposition. The As(III) was detected by CB‐AuNPs/SPE using anodic stripping voltammetry, with a high sensitivity (673±6 µA µM?1 cm?2) and reaching a LOD of 0.4 ppb. Finally, CB‐AuNPs/SPE has been applied to As(III) trace analysis in drinking water, obtaining satisfactory recovery values (99±9 %). 相似文献
13.
Graciela Priano Graciela González Mauricio Günther Fernando Battaglini 《Electroanalysis》2008,20(1):91-97
An efficient and inexpensive eight gold electrode array has been manufactured by a combination of screen printing and gold electrodeposition techniques. Gold electrodeposition was performed in potentiostatic and galvanostatic conditions. Different treatments, involving temperature and polishing control, led to electrodes with different roughness. The electrochemical behavior of the generated gold surface was studied by cyclic voltammetry showing the characteristic response of polycrystalline gold, in contrast with disposable gold electrodes fabricated by screen printing from gold inks. The electrodes were chemically modified through the adsorption of alkanethiols self‐assembled monolayers and the coupling of a model protein. Both reactions were followed by cyclic voltammetry and Electrochemical Impedance Spectroscopy (EIS). The electrodes have shown high reproducibility in their electrochemical behavior as well as in their modifications. 相似文献
14.
《Analytical letters》2012,45(5):885-897
Hemoglobin (Hb) was successfully immobilized on a gold electrode modified with gold nanoparticles (AuNPs) via a molecule bridge 1,6-hexanedithiol (HDT). The AFM images suggested that the HDT/gold electrode could adsorb more AuNPs. UV-vis spectra indicated that Hb on AuNPs/HDT film retained its near-native secondary structures. The electrochemical behaviors of the sensor were characterized with cyclic voltammetric techniques. The resultant electrode displayed an excellent electrocatalytical response to the reduction of hydrogen peroxide (H2O2). The linear relationship existed between the catalytic current and the H2O2 concentration ranging from 5.0 × 10?8 to 1.0 × 10?6 mol · L?1. The detection limit (S/N = 3) was 1.0 × 10?8 mol · L?1. 相似文献
15.
16.
A polyaniline based amperometric pH sensor has been developed using a novel electrochemical measurement system. A polyaniline film (PANI) coated pencil graphite electrode (PGE) is connected in series between the working and counter electrodes of a potentiostat, and immersed in the solution together with a reference electrode. When an external potential is applied, the resulting current varies with the solution pH, which provides the basis for the amperoemtric pH sensor. Equations describing the measurement principle are presented. Based on pH dependent emeraldine salt–emeraldine base transition of PANI film, the pH sensor exhibits high stability, accuracy, selectivity, sensitivity and a short time. 相似文献
17.
Electrochemical Sensor Based on Gold Nanoparticles Stabilized in Poly(Allylamine hydrochloride) for Determination of Vanillin 下载免费PDF全文
Tânia Regina Silva Daniela Brondani Eduardo Zapp Iolanda Cruz Vieira 《Electroanalysis》2015,27(2):465-472
Gold nanoparticles stabilized in poly(allylamine hydrochloride) (AuNP‐PAH) were synthesized, characterized and applied in the development of a new sensor for the determination of vanillin by square‐wave voltammetry. Under optimized conditions, the calibration curve showed a linear range for vanillin of 0.90 to 15.0 µmol L?1, with a limit of detection of 55 nmol L?1. The sensor demonstrated acceptable selectivity and stability, as well as good intra‐day and inter‐day repeatability and electrode‐to‐electrode repeatability (with relative standard deviations of 3.5, 4.5 and 3.9 %, respectively). The sensor was successfully applied in the determination of vanillin in different commercial samples. 相似文献
18.
The application of multiwalled carbon nanotube (MWCNT) based screen printed graphite electrodes (SPEs) was explored in this study for the electrochemical monitoring of DNA hybridization related to specific sequences on Hepatitis B virus (HBV) DNA. After the microscopic characterization of bare MWCNT‐SPEs and DNA immobilized ones was performed, the optimization of assay has been studied. The development of screen printing process combined with nanomaterial based disposable sensor technology leads herein a great opportunity for DNA detection using differential pulse voltammetry (DPV) by measuring the guanine oxidation signal observed at +1.00 V in the presence of DNA hybridization between HBV probe and its complementary, target. The detection limit estimated for signal to noise ratios =3 corresponds to 96.33 nM target concentration in the 40 μL samples. The advantages of carbon nanotube based screen printed electrode used for electrochemical monitoring of DNA hybridization are discussed with sensitivity, selectivity and reproducibility in comparison with previous nanomaterial based electrochemical transducers developed for DNA or other biomolecular recognitions. 相似文献
19.
研究了纳米金/双氢氧化物膜修饰玻碳电极(AuNPs/LDHs/GCE)的制备,通过循环伏安法、扫描电镜和电化学阻抗对修饰电极进行了表征;详细讨论了电极的性能,找出了制备该修饰电极的实验条件,并将此电极用于生物体系中肾上腺素(Adrenaline,AD)的电化学测定.在选定的实验条件下,修饰电极在磷酸盐缓冲溶液(pH=7.0)中进行循环伏安扫描时,氧化峰电流和肾上腺素浓度在9.0×10-8~1.0×10-4mol/L范围内呈良好的线性关系,相关系数为0.9982,其检出限(S/N=3)可达3.1×10-8 mol/L.据此建立了一种新的测定肾上腺素的分析方法,可用于实际样品的检测. 相似文献
20.
《Electroanalysis》2005,17(17):1578-1582
The results presented here demonstrate the important catalytic effect of a carbon paste electrode modified by dispersion of gold nanoparticles towards different electroactive compounds. The oxidation of hydrogen peroxide starts at potentials 400 mV less positive than at bare carbon paste, while the reduction, almost negligible at bare carbon paste, starts at 0.100 V. The influence of the size and amount of gold nanoparticles in the composite matrix on the response of the electrode is discussed. The incorporation of albumin within the carbon paste facilitates the dispersion of gold nanoparticles, improving substantially the catalytic effects. At carbon paste modified with gold nanoparticles and albumin, the peak potential separation for hydroquinone decreases from 0.385 V to 0.209 V while the reduction current increases from 16.6 to 75.2 μA. The immobilization of polyphenol oxidase within the carbon paste electrode modified with nanoparticles has allowed us to obtain a very sensitive biosensor for dopamine even in the presence of large excess of ascorbic acid. 相似文献