共查询到18条相似文献,搜索用时 0 毫秒
1.
以4-巯基苯甲酸修饰纳米金粒子作为固酶载体和导电基体构建了新型纳米结构固酶葡萄糖/O2燃料电池,其制备简单,长期使用性能稳定。利用纳米金粒子通过表面修饰基团和酶分子活性中心附近疏水结合位之间的相互作用固定葡萄糖氧化酶(GOx)和漆酶(Lac)分子,分别制备了固酶阳极-4-巯基苯甲酸功能化纳米金粒子固定葡萄糖氧化酶修饰金盘电极GOx/4-MBA@GNP/Au和固酶阴极-4-巯基苯甲酸功能化纳米金粒子固定漆酶修饰金盘电极Lac/4-MBA@GNP/Au。电化学实验结果表明,两种电极在不引入任何外加电子中介的条件下,均可以实现酶活性中心-纳米金粒子之间的直接电子迁移,而且具有较快的催化反应能力(固酶阳极和阴极的转化速率分别为1.3和0.5 s-1;催化葡萄糖氧化和氧气还原的起始电位分别为-0.23和0.76 V)。评估了固酶阳极和阴极组装成的纳米结构固酶葡萄糖/O2燃料电池的能量输出性能。该燃料电池在没有Nafion薄膜和阳极无N2气保护下,开路电压和最大输出能量密度分别可达0.56 V和760.0 μW/cm2,使用一周后输出能量密度仍然可以达到最初值的~88%。进一步测试结果显示,该燃料电池呈现出与游离漆酶类似的pH依赖关系和热稳定性,这些实验结果均暗示:影响整个酶燃料电池性能的关键在于漆酶基阴极催化氧还原的过程。此外,这种燃料电池的性能虽然受到共存干扰物抗坏血酸的影响,但在人类血清中测试结果显示其仍然具有较高的输出能量密度(132.0 μW/cm2,开路电压0.40 V)。本文研究结果给出了设计高性能葡萄糖/O2燃料电池的新思路,同时也为研究固酶燃料电池的构效关系提供了实验依据和有价值的启示。 相似文献
2.
《Electroanalysis》2018,30(3):525-532
A novel hierarchically nanoporous carbon (NPC) derived from Al‐based porous coordination polymer is prepared by two‐step carbonization method for immobilization of the Co3O4 in the application of the nonenzymatic biofuel cells and biosensors. The structure and morphology are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), and X‐ray diffraction (XRD). Brunauer‐Emmett‐Teller (BET) is to characterize the porous nature of the NPC, and X‐ray photoelectron spectroscopy (XPS) is to characterize the composition of Co3O4@nanoporous carbon (Co3O4@NPC). Without collapse in the high carbonization temperature (above 1600 °C), the NPC maintains the nanoporous structure and high specific surface area of 1551.2 m2 g−1. In addition, the NPC is composited with Co3O4 by hydrothermal method to form the Co3O4@NPC. When tested as the nonenzymatic electrocatalyst for glucose oxidation reaction (GOR), the Co3O4@NPC exhibits higher response to glucose, in which the current shifts up by 64 %, than pure Co3O4 in 0.1 M KOH. The limit of detection is 0.005 mM (S/N=3) and response time is within 3 s. The detection range can be divided into two sections of 0.02–1.4 mM and 1.4–10.7 mM with the sensitivity of 249.1 μA mM−1 cm−2 and 66.6 μA mM−1 cm−2, respectively. A glucose fuel cell is constructed with the Co3O4@NPC as the anode and Pt/C catalyst as the cathode. The open‐circuit potential of the nonenzymatic glucose/O2 fuel cell was 0.68 V, with a maximum power density of 0.52 mW cm−2 at 0.27 V. This work may contribute to exploring other nanoporous carbons for application in glucose fuel cells and biosensors. 相似文献
3.
Wireless Information Transmission System Powered by an Abiotic Biofuel Cell Implanted in an Orange 下载免费PDF全文
Yaovi Holade Kevin MacVittie Tyler Conlon Nataliia Guz Karine Servat Teko W. Napporn K. Boniface Kokoh Evgeny Katz 《Electroanalysis》2015,27(2):276-280
An “abiotic” biofuel cell composed of catalytic electrodes modified with inorganic nanoparticles (NPs) deposited on carbon black (CB) was used to activate a wireless information transmission system. The cathode and anode were made of carbon paper modified with Pt‐NPs/CB and buckypaper modified with Au80Pt20‐NPs/CB, respectively. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as 0.36 V, 1.3 mA cm?2 and 182 µW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for activation of electronic devices. 相似文献
4.
Valdas Laurinavicius Bogumila Kurtinaitiene Rasa Stankeviciute 《Electroanalysis》2008,20(13):1391-1395
Glucose sensitive biosensor containing pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase immobilized on Prussian blue (PB)‐modified graphite electrode was designed. Properties of the biosensor were investigated in the cathodic and anodic response detection regions. It was shown, that anodic response of the biosensor is sum of two signals: direct electron transport from reduced PQQ to the electrode and by formation of the PQQ‐oxygen‐PB‐carbon ternary complex. Cathodic response of the biosensor is based on the oxidation of the reduced PQQ by PB‐oxygen‐PB complex. Electrochemical regeneration of the enzyme does not produce free hydrogen peroxide. 相似文献
5.
The direct bioelectrocatalysis was demonstrated for pyrroloquinoline quinone‐dependent glucose dehydrogenase (PQQ‐dependent GDH) covalently attached to single‐walled carbon nanotubes (SWNTs). The homogeneous ink‐like SWNT suspension was used for both creating the SWNT network on the microelectrode carbon surface and for enzyme immobilization. Functionalization of the SWNT surface by forming active ester groups was found to considerably enhance SWNT solubility in water with a range from 0.1 to 1.0 mg/mL. The PQQ‐dependent GDH immobilized on the surface of the SWNTs exhibited fast heterogeneous electron transfer with a rate constant of 3.6 s?1. Moreover, the immobilized PQQ‐dependent GDH retained its enzymatic activity for glucose oxidation. A fusion of PQQ‐dependent GDH with SWNTs has a great potential for the development of low‐cost and reagentless glucose sensors and biofuel cells. 相似文献
6.
A Bioanode Using Thermostable Alcohol Dehydrogenase for an Ethanol Biofuel Cell Operating at High Temperatures 下载免费PDF全文
Aya Kontani Miyuki Masuda Hirotoshi Matsumura Nobuhumi Nakamura Masafumi Yohda Hiroyuki Ohno 《Electroanalysis》2014,26(4):682-686
To extend the range of biofuel cell applications, we wish to increase their maximum operational temperatures. Using a thermostable alcohol dehydrogenase as a biocatalyst, we prepared an enzyme‐immobilized bioanode that can operate at high temperatures. The catalytic current for ethanol oxidation was increased using this electrode at temperatures up to 80 °C. 相似文献
7.
Yueming Tan Qingji Xie Jinhua Huang Weisheng Duan Ming Ma Shouzhuo Yao 《Electroanalysis》2008,20(14):1599-1606
An electrochemical noise (ECN) device was utilized for the first time to study and characterize a glucose/O2 membraneless biofuel cell (BFC) and a monopolar glucose BFC. In the glucose/O2 membraneless BFC, ferrocene (Fc) and glucose oxidase (GOD) were immobilized on a multiwalled carbon nanotubes (MWCNTs)/Au electrode with a gelatin film at the anode; and laccase (Lac) and an electron mediator, 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS), were immobilized on a MWCNTs/Au electrode with polypyrrole at the cathode. This BFC was performed in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air, with a maximum power density of 8 μW/cm2, an open‐circuit cell voltage of 0.29 V, and a short‐circuit current density of 85 μA/cm2, respectively. The cell current at the load of 100 kΩ retained 78.9% of the initial value after continuous discharging for 15 h in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air. The performance decrease of the BFC resulted mainly from the leakage of the ABTS mediator immobilized at the cathode, as revealed by the two‐channel quartz crystal microbalance technique. In addition, a monopolar glucose BFC was performed with the same anode as that in the glucose/O2 membraneless BFC in a stirred phosphate buffer solution (pH 7.0) containing 40 mmol/L glucose, and a carbon cathode in Nafion‐membrane‐isolated acidic KMnO4, with a maximum power density of 115 μW/cm2, an open‐circuit cell voltage of 1.24 V, and a short‐circuit current density of 202 μA/cm2, respectively, which are superior to those of the glucose/O2 membraneless BFC. A modification of the anode with MWCNTs for the monopolar glucose BFC increased the maximum power density by a factor of 1.8. The ECN device is highly recommended as a convenient, real‐time and sensitive technique for BFC studies. 相似文献
8.
《Macromolecular rapid communications》2017,38(6)
A simplified one‐pot and less harmful method has been introduced for the synthesis of borinic acid monomer. The corresponding borinic acid polymer (PBA) has been prepared by reversible addition‐fragmentation chain transfer polymerization. Property investigations confirm the characteristics of PBA as a new type of “smart material” in the field of thermo‐responsive polymer. The potential application of PBA in the field of enzymatic biofuel cell has been illustrated with a wide open circuit potential of 0.92 V.
10.
《Electroanalysis》2017,29(11):2646-2655
Guanine‐ionic liquid derived ordered mesoporous carbon (GIOMC) decorated with gold nanoparticles was used as electrocatalyste for NADH oxidation and electrochemical platform for immobilization of glucose dehydrogenase (GDH) enzyme. The resulting GIOMC/AuNPs on the glassy carbon electrode can be used as novel redox‐mediator free for NADH sensing and this integrated system (GIOMC/AuNPs/GDH) shows excellent electrocatalytic activity toward glucose oxidation. Furthermore, the ionic liquid derived ordered mesoporous carbon derivate with Ph‐SO3H (IOMC‐PhSO3H) decorated with AuNPs has been developed to bilirubin oxidase enzyme (BOD) immobilization and the GC/IOMC‐PhSO3H/BOD integrated system shows excellent bioelectrocatalytic activity toward oxygen reduction reaction. The proposed mesostructured platforms decorated by AuNPs have been developed to enhance mass transfer and charge transfer from biocatalyst to electrode, leading these bioanode and biocathode used for biofuel cell assembly. Integration designed bioanode and biocathode yielding a membrane‐less glucose/O2 biofuel cell with power density of 33 (mW.cm−2) at 257 mV. The open circuit voltage of this biofuel cell and maximum produced current density were 508 mV and 0.252 (mA.cm−2) respectively. 相似文献
11.
Sidney Aquino Neto Thiago S. Almeida Matthew T. Meredith Shelley D. Minteer Adalgisa R. De Andrade 《Electroanalysis》2013,25(10):2394-2402
We prepared and characterized electrocatalysts based on multiwalled carbon nanotubes (MWCNTs) coated with methylene green (MG). These electrocatalysts can regenerate nicotinamide adenine dinucleotide (NAD+), so they are potentially applicable in the field of bioelectronics. NADH oxidation occurs between 0.14±0.002 and 0.16±0.002 V vs. Ag/AgCl. The most efficient bioanode furnishes 88±7 µW cm?2 and 500 µA cm?2 and an open circuit voltage of 590±22 mV. In conclusion, we obtained a reliable and easy‐to‐prepare electrocatalyst that can regenerate NAD+ and may be applicable in biosensors and bioelectronic devices that use a wide range of NAD+‐dependent enzymes. 相似文献
12.
《中国化学》2017,35(7):1098-1108
In this study, chemical reduced graphene‐silver nanoparticles hybrid (AgNPs @CR‐GO ) with close‐packed AgNPs structure was used as a conductive matrix to adsorb enzyme and facilitate the electron transfer between immobilized enzyme and electrode. A facile route to prepare AgNPs @CR‐GO was designed involving in β ‐cyclodextrin (β ‐CD ) as reducing and stabilizing agent. The morphologies of AgNPs were regulated and controlled by various experimental factors. To fabricate the bioelectrode, AgNPs @CR‐GO was modified on glassy carbon electrode followed by immobilization of glucose oxidase (GOx ) or laccase. It was demonstrated by electrochemical testing that the electrode with close‐packed AgNPs provided high GOx loading (Γ =4.80 × 10−10 mol•cm−2) and fast electron transfer rate (k s=5.76 s−1). By employing GOx based‐electrode as anode and laccase based‐electrode as cathode, the assembled enzymatic biofuel cell exhibited a maximum power density of 77.437 μW •cm−2 and an open‐circuit voltage of 0.705 V. 相似文献
13.
Julian Szczesny James A. Birrell Felipe Conzuelo Wolfgang Lubitz Adrian Ruff Wolfgang Schuhmann 《Angewandte Chemie (International ed. in English)》2020,59(38):16506-16510
The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual‐gas diffusion electrode H2/O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer‐based high‐current‐density H2‐oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm?2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer‐based biofuel cell with outstanding power densities of 5.4 mW cm?2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2. 相似文献
14.
Self‐Powered and Sensitive DNA Detection in a Three‐Dimensional Origami‐Based Biofuel Cell Based on a Porous Pt‐Paper Cathode 下载免费PDF全文
Dr. Yanhu Wang Dr. Lei Ge Dr. Chao Ma Dr. Qingkun Kong Prof. Mei Yan Prof. Shenguang Ge Prof. Jinghua Yu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12453-12462
In this work, a mediator‐less and compartment‐less glucose/air enzymatic biofuel cell (BFC) was introduced into microfluidic paper‐based analytical devices (μ‐PADs) with gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs)‐modified paper electrode as the anodic and cathodic substrate, respectively, to implement self‐powered, sensitive, low‐cost and simple DNA detection. As a further development of the analytical equipment, an all‐solid‐state paper supercapacitor (PS) was designed and integrated into the BFC for current amplification, and a terminal digital multi‐meter detector (DMM) was introduced for the current detection. A highly sensitive DNA sensor was fabricated by covalently immobilizing the capture DNA in the AuNPs‐modified anode. The nanoporous gold conjugated with bienzymes, glucose oxidase and horseradish peroxidase, which were used as electrochemical labels. The electrons generated at the anode flow through an external circuit to the PtNPs‐modified cathode that catalyzed the reduction of oxygen with the participation of protons. In addition, the generated current could be collected and stored by the PS. After that, the PS was automatically shorted under the control of a switch to output an instantaneously amplified current, which could be sensitively detected by the terminal DMM. At the optimal conditions, the paper‐based analytical platform can detect DNA at the femtomole level. This approach also shows excellent specificity toward single nucleotide mismatches. 相似文献
15.
《Electroanalysis》2017,29(6):1651-1657
Gluconobacter oxydans (G. oxydans ) cells together with an osmium redox polymer (ORP) [Osmium (2,2’‐bipyridine)2(poly‐vinylimidazole)10Cl]Cl were combined with a glassy carbon paste electrode (GCPE) to form a bioanode for a microbial fuel cell (MFC) based on G. oxydans . Although there are G.oxydans / ORP combined bioanode in the literature, as far as it is known, this system is the first one where G.oxydans /ORP bioanode is combined with a cathode and a MFC is formed. After the optimization of experimental parameters, analytical characteristics of ORP/G. oxydans /GCPE bioanode were investigated. ORP/G. oxydans /GCPE showed two linear ranges for ethanol substrate as 1.0–30 mM (R2=0.902) and 30–500 mM (R2=0.997) and analytical range as 1.0–1000 mM. Limit of detection (3.0 s/m) and limit of quantification (10 s/m) values were calculated as 1.29 mM and 4.30 mM respectively where the RSD value was 1.16 % for n=5. Combining the developed bioanode in the presence of 5.0 mM K3Fe(CN)6 mediator with a Pt wire cathode a double compartment MFC was obtained via a salt bridge. G. oxydans /GCPE bioanode based MFC had maximum power density of 0.133 μW cm−2 (at 33.5 mV), maximum current density as 8.73 μA cm−2 and OCP value of 156 mV. On the other hand, ORP/G. oxydans /GCPE based MFC showed maximum power density as 0.26 μW cm−2 (at 46.8 mV), maximum current density as 15.079 μA cm‐2 and OCP value of 176 mV. 相似文献
16.
Back Cover: Self‐Powered and Sensitive DNA Detection in a Three‐Dimensional Origami‐Based Biofuel Cell Based on a Porous Pt‐Paper Cathode (Chem. Eur. J. 39/2014) 下载免费PDF全文
Dr. Yanhu Wang Dr. Lei Ge Dr. Chao Ma Dr. Qingkun Kong Prof. Mei Yan Prof. Shenguang Ge Prof. Jinghua Yu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12680-12680
17.
Miyuki Masuda Yusuke Motoyama Kenichi Murata Nobuhumi Nakamura Hiroyuki Ohno 《Electroanalysis》2011,23(10):2297-2301
This paper reports a novel mediator for the oxidation of β‐nicotinamide adenine dinucleotide (NAD+/NADH), an electropolymeric film (pAPRu) of [Ru(NH2‐phen)3]2+. A pAPRu‐modified electrode was prepared via electropolymerization and exhibited catalytic activity toward the electrochemical oxidation of NADH due to the imine moieties of pAPRu. The electrochemical oxidation of ethanol was observed using an alcohol dehydrogenase (ADH)‐immobilized electrode. A compartmentless ethanol/O2 biofuel cell composed of an ADH anode and a bilirubin oxidase cathode was constructed. The maximum current density and the maximum power density of the biofuel cell were 190 µA cm?2 and 31 µW cm?2 (at 0.29 V), respectively. 相似文献
18.
《Electroanalysis》2003,15(10):892-897
A new chemically modified electrode (CME) was fabricated, which was based on the immobilization of multi‐wall carbon nanotubes fuctionalized with carboxylic group (MWNT‐COOH). The results indicated that the CME exhibited efficiently electrocatalytic oxidation for L ‐cysteine and glutathione with relatively high sensitivity, stability and long‐life. Coupled with HPLC, the MWNT‐COOH CME was utilized for amperometric detection of the thiols. The peak currents of L ‐cysteine and glutathione were linear to their concentrations ranging from 3.0×10?7 to 1.0×10?3 mol/L with the calculated detection limit (S/N=3) of 1.2×10?7, 2.2×10?7 mol/L, respectively. The method had been successfully applied to assess the contents of L ‐cysteine and glutathione in rat striatal microdialysates. 相似文献