首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

2.
Ab initio multiconfigurational CASSCF/MP2 method with the 6‐31G* basis set has been employed in studying the photochemistry of bicyclo[4.1.0]hept‐2‐ene upon direct photolysis. Our calculations involve the ground state (S0) and excited states (S1, T1, and T2). The ground‐state reaction pathways corresponding to the formation of the six products derived from bicyclo[4.1.0]hept‐2‐ene via two important diradical intermediates (D1 and D2) were mapped. It was found that there are various crossing points (conical intersections and singlet–triplet crossings) in the regions near D1 and D2. These crossing points imply that direct photolysis can lead to two possible radiationless relaxation routes: (1) S1 → S0, (2) S1 → T2 → T1 → S0. Computation indicates that the second route is not a competitive path with the first route during direct photolysis. The first route is initiated by barrierless cyclopropane bond cleavage to form two singlet excited diradical intermediates, followed by efficient decay to the ground‐state surface via three S1/S0 conical intersections in the regions near the diradical intermediates. All six ground‐state products can be formed via the three conical intersections almost without barrier after the decays. The barriers separating the diradical minima on S1 from the S1/S0 conical intersections were found to be very small with respect to the vertical excitation energy, which can explain why the product distribution is independent of excitation wavelength. Triplet surfaces are not involved in the first route, which agrees with the fact that the product contribution was unchanged by the addition of naphthalene. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

3.
Using mixed quantum–classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto‐cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto‐cytosine to the ground state. Non‐adiabatic transfer between the ππ* and nπ* excited states and deactivation via three‐state conical intersections is observed in the very early stage of the dynamics. In less than 100 fs, a large amount of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients observed experimentally.  相似文献   

4.
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm?1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems.  相似文献   

5.
Electronic structure calculations and nonadiabatic dynamics simulations (more than 2000 trajectories) are used to explore the ZE photoisomerization mechanism and excited‐state decay dynamics of two arylazopyrazole photoswitches. Two chiral S1/S0 conical intersections with associated enantiomeric S1 relaxation paths that are barrierless and efficient (timescale of ca. 50 fs) were found. For the parent arylazopyrazole (Z8) both paths contribute evenly to the S1 excited‐state decay, whereas for the dimethyl derivative (Z11) each of the two chiral cis minima decays almost exclusively through one specific enantiomeric S1 relaxation path. To our knowledge, the Z11 arylazopyrazole is thus the first example for nearly stereospecific unidirectional excited‐state relaxation.  相似文献   

6.
The potential surfaces of the ground and lowest excited states of the [RuCl5NO]2? complex ion were studied by density functional theory. The conical intersections between the potential surfaces of the ground and lowest excited states were found and characterized. The possible routes from the conical intersection points to the ground state and metastable bond isomers were traced. A preliminary scheme, describing photoisomerizations in the complex, was suggested.  相似文献   

7.
A balanced treatment of the covalent and ionic contributions to the ground and excited states originating from torsion about double bonds is known to be strongly dependent on the presence of dynamic electron correlation. We undertake an analysis of the minimum energy pathways corresponding to deactivation of the first excited singlet state of PSB3. In doing so we consider torsion about the three double bonds including other intramolecular degrees of freedom, such as the bond length alternation. The 3-D bond-path analysis provides a new ‘bond-localized orbital-like’ directional interpretation of bonding. Therefore, we present a more sophisticated method of determination of the degree of covalent and ionic contributions known to be responsible for altering the relative stability of the S1/S0 conical intersections. The results presented suggest that the commonly used simplified multi-reference methodologies that often result in incorrect predictions for the excited state deactivation reaction mechanism.  相似文献   

8.
利用时间分辨的飞秒光电子影像技术结合时间分辨的质谱技术, 研究了2-氯吡啶分子激发态的超快过程. 实时观察到了2-氯吡啶分子第二激发态(S2)向第一激发态(S1)高振动能级的的超快内转换过程,该内转换的时间常数为(162±5)fs. 实验结果表明, 通过S2/S0的锥形交叉衰减到基态的衰减通道也是退布居的重要通道, 其时间尺度为(5.5±0.3) ps.  相似文献   

9.
Ab initio calculations were performed to investigate photoinduced transfers among the ground state (GS) and two metastable states (MS1 and MS2) of [Fe(CN)5NO]2-. We obtained the global potential energy surface of the electronic ground state by a scheme of multireference singly and doubly excited configuration interaction followed by a Davidson-type quadruple correction (MRSDCI+Q). The ground state surface has three local minima corresponding to GS, MS1, and MS2. The character of bond between Fe and the nitrosyl group are discussed. We carried out calculations of the lower five electronic excited states by MRSDCI+Q. The main configurations of these lower five excited states were represented by the dFe-->pi*NO transition accompanied by considerable back-donation. The potential energy surfaces of the six states, including the ground state, were obtained by state averaged complete active space self-consistent field calculations. The surfaces have several conical intersections and avoided crossings in the reaction pathway. The photoinduced transfers among GS, MS1, and MS2 are caused by the nonadiabatic effect near these crossings.  相似文献   

10.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

11.
The ground and electronically excited singlet states of tetrahydrocannabinol have been studied theoretically using density functional and time-dependent density functional methods. The vertical excitation energies, the equilibrium geometries as well as the adiabatic excitation energies have been determined. Opening of the six-membered ring between the oxygen and carbon atoms has been considered as photochemical reaction path. This mechanism leads to a typical excited-state intramolecular hydrogen-transfer process and produces low-lying S 0S 1 intersection (possible conical intersection, CI) which provides a channel for effective radiationless deactivation of the electronically excited state.  相似文献   

12.
We employed the complete active space self‐consistent field (CASSCF) and its multistate second‐order perturbation (MS‐CASPT2) methods to explore the photochemical mechanism of 2‐hydroxyazobenzene, the molecular scaffold of Sudan I and Orange II dyes. It was found that the excited‐state intramolecular proton transfer (ESIPT) along the bright diabatic 1ππ* state is barrierless and ultrafast. Along this diabatic 1ππ* relaxation path, the system can jump to the dark 1nπ* state via the 1ππ*/1nπ* crossing point. However, ESIPT in this dark state is largely inhibited owing to a sizeable barrier. We also found two deactivation channels that decay 1ππ* keto and 1nπ* enol species to the ground state via two energetically accessible S1/S0 conical intersections. Finally, we encountered an interesting phenomenon in the excited‐state hydrogen‐bonding strength: it is reinforced in the 1ππ* state, whereas it is reduced in the 1nπ* state. The present work sets the stage for understanding the photophysics and photochemistry of Sudan I–IV, Orange II, Ponceau 2R, Ponceau 4R, and azo violet.  相似文献   

13.
We have studied the charge‐transfer‐induced deactivation of nπ* excited triplet states of benzophenone derivatives by O2(3Σ), and the charge‐transfer‐induced deactivation of O2(1Δg) by ground‐state benzophenone derivatives in CH2Cl2 and CCl4. The rate constants for both processes are described by Marcus electron‐transfer theory, and are compared with the respective data for a series of biphenyl and naphthalene derivatives, the triplet states of which have ππ* configuration. The results demonstrate that deactivation of the locally excited nπ* triplets occurs by local charge‐transfer and non‐charge‐transfer interactions of the oxygen molecule with the ketone carbonyl group. Relatively large intramolecular reorganization energies show that this quenching process involves large geometry changes in the benzophenone molecule, which are related to favorable Franck‐Condon factors for the deactivation of ketone‐oxygen complexes to the ground‐state molecules. This leads to large rate constants in the triplet channel, which are responsible for the low efficiencies of O2(1Δg) formation observed with nπ* excited ketones. Compared with the deactivation of ππ* triplets, the non‐charge‐transfer process is largely enhanced, and charge‐transfer interactions are less important. The deactivation of singlet oxygen by ground‐state benzophenone derivatives proceeds via interactions of O2(1Δg) with the Ph rings.  相似文献   

14.
The radiationless decay mechanisms of the S1 excited states of the 7H-keto-amino, 7H-enol-amino, and 7H-keto-imino tautomers of guanine have been investigated with the CASPT2//CASSCF method. Out-of-plane deformation of the six-membered ring or the imino group as well as dissociation of NH bonds have been considered as photochemical pathways leading to conical intersections with the electronic ground state. It has been found that all three tautomers can reach S0-S1 conical intersections by out-of-plane deformation. However, only in the 7H-keto-amino tautomer the reaction path leading to the conical intersection is barrierless. This tautomer also has the lowest energy barrier for hydrogen detachment via the (1)pi sigma* state, whose potential energy surface intersects that of the (1)pi pi* state as well as that of the ground state. The other tautomers of guanine exhibit substantial energy barriers on their S1 potential energy surfaces with respect to both reaction mechanisms. These findings suggest that the 7H-keto-amino tautomer exhibits the shortest excited-state lifetime of the three tautomers due to particularly fast nonradiative deactivation processes through S0-S1 conical intersections. The computational results explain the remarkable observation that the energetically most stable 7H-keto-amino tautomer is missing in the resonant two-photon ionization spectrum of guanine in a supersonic jet. The results also explain that the energetically less stable 7H-enol-amino and 7H-keto-imino tautomers have longer excited-state lifetimes and are thus detectable by resonant two-photon ionization.  相似文献   

15.
The electronically excited singlet states of complexes of uracil with one water molecule have been studied theoretically using ab initio multireference configuration interaction methods. In agreement with previous theoretical and experimental results, four cyclic isomers of uracil forming hydrogen bonds with the water molecule have been located with energies within 0.2 eV from the lowest energy isomer. Focus has been given on the mechanism for radiationless decay to the ground state after initial UV absorption and on the effect of complexation with water on previously reported radiationless decay pathways. Features on the excited state potential energy surfaces, such as minima, transition states and conical intersections, have been located for all isomers and compared with those of free uracil. The hydrogen-bonded water molecule changes the relative energies of these features and may lead to different excited state dynamics and lifetimes, in agreement with experimental observations.  相似文献   

16.
The ab initio nanoreactor has previously been introduced to automate reaction discovery for ground state chemistry. In this work, we present the nonadiabatic nanoreactor, an analogous framework for excited state reaction discovery. We automate the study of nonadiabatic decay mechanisms of molecules by probing the intersection seam between adiabatic electronic states with hyper-real metadynamics, sampling the branching plane for relevant conical intersections, and performing seam-constrained path searches. We illustrate the effectiveness of the nonadiabatic nanoreactor by applying it to benzene, a molecule with rich photochemistry and a wide array of photochemical products. Our study confirms the existence of several types of S0/S1 and S1/S2 conical intersections which mediate access to a variety of ground state stationary points. We elucidate the connections between conical intersection energy/topography and the resulting photoproduct distribution, which changes smoothly along seam space segments. The exploration is performed with minimal user input, and the protocol requires no previous knowledge of the photochemical behavior of a target molecule. We demonstrate that the nonadiabatic nanoreactor is a valuable tool for the automated exploration of photochemical reactions and their mechanisms.

The nonadiabatic nanoreactor is a tool for automated photochemical reaction discovery that extensively explores intersection seams and links conical intersections to photoproduct distributions.  相似文献   

17.
Three deactivation paths for singlet excited cytosine are calculated at the CASPT2//CASSCF (complete active space second-order perturbation//complete active space self-consistent field) level of theory, using extended active spaces that allow for a reliable characterization of the paths and their energies. The lowest energy path, with a barrier of approximately 0.1 eV, corresponds to torsion of the C5-C6 bond, and the decay takes place at a conical intersection analogous to the one found for ethylene and its derivatives. There is a further path with a low energy barrier of approximately 0.2 eV associated with the (n(N),pi*) state which could also be populated with a low energy excitation. The path associated with a conical intersection between the ground and (n(O),pi*) states is significantly higher in energy (> 1 eV). The presence of minima on the potential energy surface for the (n,pi*) states that could contribute to the biexponential decay found in the gas phase was investigated, but could not be established unequivocally.  相似文献   

18.
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches.  相似文献   

19.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

20.
We report on‐the‐fly surface‐hopping dynamics simulations of single adenine embedded in solvated DNA oligomers, (dA)10 and (dA)10·(dT)10. Both model systems are found to decay from the S1 to the S0 state via distinct monomeric channels, on account of the strong hydrogen‐bonding interactions between the Watson–Crick pair in the double‐stranded oligomer. Surprisingly, the decay times (several picoseconds) for the current models are 10 times longer than those of adenine in the gas or aqueous phase, while matching one of the time constants observed experimentally. We discuss possible reasons for these longer decay times, including steric hindrance in the DNA strands, electronic effects of the environment, and the presence of other local excited‐state minima. We present optimized geometries and relative energies for representative S0 and S1 minima as well as conical intersections related to the hopping events. We have also computed steady‐state and time‐dependent fluorescence spectra that may help understand the experimental observations. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号