首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The computational study of gold(I)‐catalyzed ring expansion reactions of unactivated alkynylcyclopropanes is reported. The main finding of this work is that when unactivated alkynylcyclopropane with a smaller singlet‐triplet splitting (ΔEST) is utilized, the gold(I)‐catalyzed ring expansion step has a smaller activation energy and a larger exothermicity. For more information about this figure, turn to pp 473~480 in this issue.  相似文献   

2.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

3.
Density functional theory calculations with the B3LYP functional are used to study the structure and stabilities of C5H2 isomers and possible isomerization mechanisms on the triplet and singlet potential energy surfaces.Calculated results show that isomerization of C5H2 is likely to occur on the triplet potential energy surface while direct conversions of the singlet C5H2 isoers via 1,3-hydrogen migration transitions of the singlet C5H2 isomers via 1,3-hydrogen migration transition states are extremely difficult dynamically.In such isomerization processes,the hydrogen transfer processes in carbon chains are the rate-determining steps.The triplet species except the linear ground state X^3∑g^- are rather less stable than their singlet forms,although the singlet and triplet species haver similar geometries.  相似文献   

4.
The aza‐ and arsa‐Wittig reactions HM=PH3 + O=CHX → HM=CHX + O=PH3 (M = N, As; X = H, F, Cl, Me, OMe, NMe2, CMe3) were examined using the density functional theory calculations. All of the structures were completely optimized at the B3LYP/6‐311++G** level of theory. The main finding of this work is that the difference between singlet‐triplet splitting of O=CHX and HM=PH3 play an important role in determining the kinetic and thermodynamic stability of the aza‐ and arsa‐Wittig reactions. When HM=PH3 with more ylidic character is utilized, the reaction has a smaller activation energy and a larger exothermicity.  相似文献   

5.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

6.
A detailed investigation has been performed at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311+G(d,p) level for the reaction of NCO with C2H5 by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable on the singlet PES than on the triplet PES. On the singlet PES, the initial addition processes are barrierless and release lots of energy. The dominant channel occurs via the fragmentations of the initial adduct C2H5NCO and C2H5OCN to form C2H4 + HNCO and HOCN, respectively. With higher barrier heights, other products such as CH4 + HNC + CO, CH3CHNH + CO, CH3CH + HNCO, and CH3CN + H2 + CO are less competitive. On the triplet PES, the entrance reactions surpass significant barriers; therefore, it could be negligible at the normal atmospheric condition. However, the most feasible channel on the triplet PES is the direct hydrogen abstraction channel to form CH2CH2 + HNCO. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
The seven‐membered beryllium‐containing heterocycle beryllepin, C6H6Be, has been examined computationally at the B3LYP/6‐311++G** density functional level of theory. Beryllepin is best described as a planar singlet heterocyclic conjugated triene with marginal aromatic character containing a C–Be–C moiety forced to be nonlinear (∠C‐Be‐C = 146.25°) by the cyclic constraints of the seven‐membered ring. The molecule can be considered to be derived from a benzene‐like system in which a neutral beryllium atom has been inserted between two adjacent carbon atoms. The 11 other possible “beryllium‐inserted benzenes,” C6H6Ben, n = 2–6, have also been investigated. Only two of these heterocyclic systems, the eight‐membered 1,4‐diberyllocin and the nine‐membered 1,4,7‐triberyllonin, were found to be stable, singlet‐ground‐state systems, albeit with little aromatic character. Of the remaining nine beryllium‐inserted benzenes, with the exception of the 11‐membered ring containing five beryllium atoms and the 12‐membered ring containing six beryllium atoms, which were calculated to exist as a ground state pentet and septet, respectively, all were calculated to be ground state triplet systems.  相似文献   

8.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

9.
Two ruthenium acetylide complexes [Ru]?C≡C?C≡C?C(OR)(C3H5)2 ( 2 , R=H and 2 a , R=CH3; [Ru]=Cp(PPh3)2Ru) each with two cyclopropyl rings were synthesized from TMS?C≡C?C≡C?C(OH)(C3H5)2 ( 1 ; TMS=trimethylsilyl). Treatments of 2 and 2 a with allyl halide in the presence of KPF6 afforded the vinylidene complexes 3 and 3 a , respectively. When NH4PF6 was used, instead of KPF6, additional ring‐opening reaction took place on one of the three‐membered ring. Treatment of [Ru]Cl with 1,3‐butadiyne ( 6 ), bearing an epoxide ring, afforded acetylide complex 7 with a furyl ring. Treatment of 2 a with Ph3CPF6 presumably afforded pentatetraenylidene complex {[Ru]=C=C=C=C=C(C3H5)2}[PF6] ( 10 ), which was not isolated. Additions of various alcohols in a solution of 10 generated a number of disubstituted allenylidene complexes {[Ru]=C=C=C(OR)?C=C(C3H5)2}[PF6] ( 11 ). Treatment of 11 with K2CO3 afforded the acetylide complex 12 bearing a carbonyl group, characterized by single X‐ray diffraction analysis. Addition of a primary amine to 10 caused cleavage of the farthermost C=C bond and several allenylidene complexes {[Ru]=C=C=C(Me)(NHR)}[PF6] ( 18 ) were isolated.  相似文献   

10.
The sum of electronic and thermal free energy differences between singlet and triplet states (Δ Gt‐s) is calculated for C4H4M, C4H6M, and C4H8M (M = C, Si, Ge, Sn, and Pb) at B3LYP/6‐311++G (3df,2p) level. Singlet–triplet splitting (Δ Gt‐s) is compared for three analogs C4H4M, C4H6M, and C4H8M. The change order of Δ Gt‐s is (except for M = C) C4H6M > C4H8M > C4H4M. The results of homodesmotic reaction energies show the most stability for singlet state of C4H6M with respect to C4H4M and C4H8M. In contrast, the triplet state of C4H4M (except for M = C) is the most stable with respect to C4H6M and C4H8M. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:245–251, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20428  相似文献   

11.
The electronic and thermal energy differences, ΔE(t-s); enthalpy differences, ΔH(t-s); and free energy differences between the singlet and triplet states, ΔG(t-s), were calculated for C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb at the B3LYP/6-311++G (3df, 2p) level. The singlet-triplet splitting, G s-t, of C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb generally increased from C6H6C toward C6H6Pb. The most stable tautomers and conformers were suggested for the singlet and triplet states of C6H6M (M = C, Si, Ge, Sn and Pb). The geometrical parameters were calculated and discussed. The text was submitted by the authors in English.  相似文献   

12.
An efficient synthetic route to 2‐ and 2,7‐substituted pyrenes is described. The regiospecific direct C? H borylation of pyrene with an iridium‐based catalyst, prepared in situ by the reaction of [{Ir(μ‐OMe)cod}2] (cod=1,5‐cyclooctadiene) with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, gives 2,7‐bis(Bpin)pyrene ( 1 ) and 2‐(Bpin)pyrene ( 2 , pin=OCMe2CMe2O). From 1 , by simple derivatization strategies, we synthesized 2,7‐bis(R)‐pyrenes with R=BF3K ( 3 ), Br ( 4 ), OH ( 5 ), B(OH)2 ( 6 ), and OTf ( 7 ). Using these nominally nucleophilic and electrophilic derivatives as coupling partners in Suzuki–Miyaura, Sonogashira, and Buchwald–Hartwig cross‐coupling reactions, we obtained 2,7‐bis(R)‐pyrenes with R=(4‐CO2C8H17)C6H4 ( 8 ), Ph ( 9 ), C≡CPh ( 10 ), C≡C[{4‐B(Mes)2}C6H4] ( 11 ), C≡CTMS ( 12 ), C≡C[(4‐NMe2)C6H4] ( 14 ), C≡CH ( 15 ), N(Ph)[(4‐OMe)C6H4] ( 16 ), and R=OTf, R′=C≡CTMS ( 13 ). Lithiation of 4 , followed by reaction with CO2, yielded pyrene‐2,7‐dicarboxylic acid ( 17 ), whilst borylation of 2‐tBu‐pyrene gave 2‐tBu‐7‐Bpin‐pyrene ( 18 ) selectively. By similar routes (including Negishi cross‐coupling reactions), monosubstituted 2‐R‐pyrenes with R=BF3K ( 19 ), Br ( 20 ), OH ( 21 ), B(OH)2 ( 22 ), [4‐B(Mes)2]C6H4 ( 23 ), B(Mes)2 ( 24 ), OTf ( 25 ), C≡CPh ( 26 ), C≡CTMS ( 27 ), (4‐CO2Me)C6H4 ( 28 ), C≡CH ( 29 ), C3H6CO2Me ( 30 ), OC3H6CO2Me ( 31 ), C3H6CO2H ( 32 ), OC3H6CO2H ( 33 ), and O(CH2)12Br ( 34 ) were obtained from 2 . These derivatives are of synthetic and photophysical interest because they contain donor, acceptor, and conjugated substituents. The crystal structures of compounds 4 , 5 , 7 , 12 , 18 , 19 , 21 , 23 , 26 , and 28 – 31 have also been obtained from single‐crystal X‐ray diffraction data, revealing a diversity of packing modes, which are described in the Supporting Information. A detailed discussion of the structures of 1 and 2 , their polymorphs, solvates, and co‐crystals is reported separately.  相似文献   

13.
Dicarbon (C2), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas‐phase synthesis is presented of the benzyl radical (C6H5CH2) by the crossed molecular beam reaction of dicarbon, C2(X1Σg+, a3Πu), with 2‐methyl‐1,3‐butadiene (isoprene; C5H8; X1A′) accessing the triplet and singlet C7H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon–carbon double bond of the 2‐methyl‐1,3‐butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7H7 radical species through atomic hydrogen elimination. The benzyl radical (C6H5CH2), the thermodynamically most stable C7H7 isomer, is determined as the major product.  相似文献   

14.
Acetylene‐linked reactive intermediates of (nitrenoethynyl)‐X‐methylenes, (nitrenoethynyl)‐X‐silylenes, and (nitrenoethynyl)‐X‐germylenes are almost experimentally unreachable (X–M–C≡C–N; X=H ( 1 ), CN ( 2 ), OH ( 3 ), NH2 ( 4 ), NO2 ( 5 ), and CHO ( 6 ); M=C, Si, and Ge). The effects of the electron‐donating and electron withdrawing groups were compared and contrasted at seven levels of theory. All singlet species as ground states with one local open‐shell singlet carbene subunit (π1π1) and another local open‐shell singlet nitrene subunit (π1π1) were found to be more stable than their corresponding triplets including one local open‐shell singlet carbene (δ1π1) (or one local closed‐shell singlet carbene [δ2π0]) and another local triplet nitrene subunit (π1π1) with 45.94–77.996 kcal/mol singlet–triplet energy gap (ΔEs‐t). Their relative silylenes and germylenes made reduction of ΔEs‐t, so the triplet ground states were found for species 3 Si , 4 Si , 5 Si , 2 Ge , 3 Ge , 4 Ge , and 5 Ge . All the singlet silylenes/germylenes formed by one local closed‐shell singlet silylenes/germylenes (δ2π0) and one local closed‐shell singlet nitrene subunit (π2π0). Also, one local closed‐shell singlet silylene/germylene subunit (δ2π0) and one local triplet nitrene subunit (π1π1) were observed for triplet silylenes/germylenes. The singlet and triplet species 3 Si , 4 Si , 3 Ge , and 4 Ge , due to their electrophilic (Si4/Ge4) and nucleophilic (X5) centers, could be identified as intermediates in chemical reactions.  相似文献   

15.
The potential energy surfaces for the chemical reactions of four‐membered N‐heterocyclic group 13 heavy carbeneoid species have been studied using density functional theory (Becke, 3‐parameter, Lee‐Yang‐Parr (B3LYP)/Los Alamos National Laboratory 2‐Double‐Zeta (LANL2DZ)). Five four‐membered group 13 heavy carbeneoid species, iPr2NC(NAr)2E:, where E = B, Al, Ga, In, and Tl, have been chosen as model reactants in this work. Also, three kinds of chemical reactions, C? H bond insertion, alkene cycloaddition, and dimerization, have been used to study the chemical reactivities of these group 13 four‐membered N‐heterocyclic carbeneoid species. In principle, our present theoretical work predicts that the larger the ∠NEN bond angle of the four‐membered group 13 iPr2NC(NAr)2E: species, the smaller the singlet–triplet splitting, the lower the activation barrier, and, in turn, the more rapid its chemical reactions to various chemical species. Moreover, our theoretical investigations suggest that the relative carbenic reactivity decreases in the following order: B > Al > Ga > In > Tl. That is, the heavier the group 13 atom (E), the more stable its four‐membered carbeneoid toward chemical reactions is. As a result, our computations predict that the four‐membered heavy group 13 iPr2NC(NAr)2E: species (E = Al, Ga, In, and Tl) should be both kinetically and thermodynamically stable, and can be readily synthesized and isolated at room temperature. Furthermore, the singlet–triplet energy splitting of the four‐membered group 13 iPr2NC(NAr)2E: species, as described in the configuration mixing model attributed to the work of Pross and Shaik, can be used as a diagnostic tool to predict their reactivities. The results obtained allow a number of predictions to be made. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

16.
Tetrakis(p‐tolyl)oxalamidinato‐bis[acetylacetonatopalladium(II)] ([Pd2(acac)2(oxam)]) reacted with Li–C≡C–C6H5 in THF with formation of [Pd(C≡C–C6H5)4Li2(thf)4] ( 1a ). Reaction of [Pd2(acac)2(oxam)] with a mixture of 6 equiv. Li–C≡C–C6H5 and 2 equiv. LiCH3 resulted in the formation of [Pd(CH3)(C≡C–C6H5)3Li2(thf)4] ( 2 ), and the dimeric complex [Pd2(CH3)4(C≡C–C6H5)4Li4(thf)6] ( 3 ) was isolated upon reaction of [Pd2(acac)2(oxam)] with a mixture of 4 equiv. Li–C≡C–C6H5 and 4 equiv. LiCH3. 1 – 3 are extremely reactive compounds, which were isolated as white needles in good yields (60–90%). They were fully characterized by IR, 1H‐, 13C‐, 7Li‐NMR spectroscopy, and by X‐ray crystallography of single crystals. In these compounds Li ions are bonded to the two carbon atoms of the alkinyl ligand. 1a reacted with Pd(PPh3)4 in the presence of oxygen to form the already known complexes trans‐[Pd(C≡C–C6H5)2(PPh3)2] and [Pd(η2‐O2)(PPh3)2]. In addition, 1a is an active catalyst for the Heck coupling reaction, but less active in the catalytic Sonogashira reaction.  相似文献   

17.
Relative stabilities and structural characters of 30 silylenic C2HXSi species (X = H, NH2, CN, and OMe), with singlet (s) and/or triplet (t) states, are calculated at six levels of theory: HF/6‐311++G**, MP3/6‐31G*, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, and MP4(SDTQ)/6‐311++G**. The four possible isomers considered for C2SiHX are (i) 3‐X‐1‐silacyclopropenylidene ( 1 s‐X and 1 t‐X ), (ii) X‐vinilydensilylene ( 2 s‐X and 2 t‐X ), (iii) ethynyl‐X‐silylene ( 3 s‐X and 3 t‐X ), and (iv) (X‐ethynyl)silylene ( 4 s‐X and 4 t‐X ). The GIAO–NICS calculations show that singlet cyclic structures, 1 s‐X , are considerably more aromatic than benzene. Conversely, triplet cyclic C2HCNSi breaks down through optimization, and transforms into a novel high‐spin acyclic carbenosilylene minimum ( 1 t‐CN ). Singlet 3 and triplet 3 cross at a divalent angle (|XSiC) of 152°. This angle narrows to 137° for crossing of singlet 3 s‐CN and triplet, 3 t‐CN . The smallest |XSiC occurs at 132° for crossing of 3 s‐H and 3 t‐H . © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:283–293, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20297  相似文献   

18.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

19.
A total of 20 singlet and 36 triplet C2Si32‐ isomers are obtained by quantum chemical calculations at the B3LYP/aug‐cc‐pVTZ level.  相似文献   

20.
With the aim of recognizing the steric effects on the silylenic H2C2Si structures, ab initio and DFT calculations are carried out on 24 structures of X2C2Si (where X is hydrogen (H), methyl (Me), isopropyl (i‐pro), and tert‐butyl (tert‐Bu)). These species are at either triplet (t) or singlet (s) states. They are confined to the following three sets of structures ( 1 X, 2 X and 3 X). Structures 1 X include silacyclopropenylidenes ( 1 s‐H and 1 t‐H) and their 2,3‐disubstituted derivatives ( 1 t‐Me, 1 s‐Me; 1 t‐i‐pro, 1 s‐i‐pro; 1 t‐tert‐Bu, 1 s‐tert‐Bu). Structures 2 X include vinylidenesilylenes ( 2 s‐H and 2 t‐H) and their 3,3‐disubstituted derivatives ( 2 t‐Me, 2 s‐Me; 2 t‐i‐pro, 2 s‐i‐pro; 2 t‐tert‐Bu, 2 s‐tert‐Bu). Structures 3 X include ethynylsilylenes ( 3 s‐H and 3 t‐H) and their 1,3‐disubstituted derivatives ( 3 t‐Me, 3 s‐Me; 3 t‐i‐pro, 3 s‐i‐pro; 3 t‐tert‐Bu, 3 s‐tert‐Bu). Singlet–triplet energy separations (Δ Es‐t, X) and relative energies for the above structures are acquired at HF/6‐31G*, B1LYP/6‐31G*, B3LYP/6‐31G*, MP2/6‐31G*, HF/6‐31G**, B1LYP/6‐31G**, B3LYP/6‐31G**, and MP2/6‐31G** levels of theory. The highest Δ Es‐t, X is encountered for 1 X. All singlet states of X2C2Si, are more stable than their corresponding triplet states. Linear correlations are found between the LUMO–HOMO energy gaps of the singlet 1 s‐X and 2 s‐X with their corresponding singlet–triplet energy separations calculated at B3LYP/6‐31G**. The seven structures 2 s‐Me, 2 t‐Me, 3 s‐Me, 1 t‐Me, 1 s‐Me, 1 s‐tert‐Bu, and 3 t‐tert‐Bu do not appear to be real isomers. Different stability orders are obtained as a function of the substituents (X). The order of stability for six isomers of H2C2Si is 1 s‐H > 2 s‐H > 3 s‐H > 2 t‐H > 3 t‐H > 1 t‐H. Replacing hydrogen atoms by methyl group (X = Me) presents a new stability order: 1 s‐Me > 3 s‐Me > 2 s‐Me > 3 t‐Me > 2 t‐Me > 1 t‐Me; and for (i‐pro)2C2Si is 1 s‐i‐pro > 2 s‐i‐pro ≈ 3 s‐i‐pro > 3 t‐i‐pro ≈ 2 t‐i‐pro > 1 t‐i‐pro. Using the larger tert‐butyl group as a substituent (X), yet it offers a more different stability order for six structures of (tert‐Bu)2C2Si: 1 s‐tert‐Bu > 3 s‐tert‐Bu > 2 s‐tert‐Bu > 3 t‐tert‐Bu > 1 t‐tert‐Bu > 2 t‐tert‐Bu. Among eight levels employed, B3LYP/6‐31G** appears as the method of choice. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:619–633, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20204  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号