首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The electrochemistry of zirconium tetrachloride in the ionic liquid N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide has been studied, and the one electron reduction is proved by chronoamperometry. Furthermore, we report the application of ZrCl4 as a facile and general ionic liquid drying agent for use in voltammetry.  相似文献   

2.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   

3.
The volatilisation of ferrocene (Fc), dissolved in the ionic liquid N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C4mpyrr][NTf2], to the gas phase has been indirectly monitored by cyclic voltammetry and chronoamperometry. Simulation of the observed trends in concentration with time using a simple model allowed quantification of the process. Volatilisation of dissolved Fc under flowing wet and dry dinitrogen gas (N2) was found to be kinetically limited with a rate constant in the region of 2×10?7 cm s?1. The activation energy of diffusion for Fc was found to be 28.2±0.7 kJ mol?1, while the activation energy of volatilisation of Fc from [C4mpyrr][NTf2] to dry N2 was found to be 85±2 kJ mol?1.  相似文献   

4.
In this paper we report on the interactions of the ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with water and the solvation of zinc ions in neat [EMIm]TfO and [EMIm]TfO–water mixtures investigated by FTIR and Raman spectroscopy. The structures and physicochemical properties of the [EMIm]TfO–water mixtures are strongly dependent on the interaction between cations, anions, and water. The structure was changed from ionic‐liquid‐like to water‐like solutions upon addition of water. In addition, zinc salts can precipitate in 0.2 M Zn(TfO)2/[EMIm]TfO upon addition of 10 % (v/v) water, presumably as a result of polarity change of the solution. The average coordination number of TfO? per zinc ion calculated from Raman spectra is 3.8 in neat [EMIm]TfO, indicating that [Zn(TfO)4]2?, and [Zn(TfO)3]? complexes are present in the solution. However, in the presence of water, water interacts preferentially with the zinc ions, leading to aqueous zinc species. The solvation of zinc ions in 1‐butyl‐1‐methylpyrrolidinium trifluoromethylsulfonate ([Py1,4]TfO) was also investigated. In [Py1,4]TfO, there are, on average, 4.5 TfO? anions coordinating each zinc ion, corresponding to the weak interaction between [Py1,4]+ cations and TfO? anions. The species present in [Py1,4]TfO are likely a mixture of [Zn(TfO)4]2? and [Zn(TfO)5]3?.  相似文献   

5.
The hydrophobic ionic liquid 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was successfully used as solvent in group transfer polymerization of traditional methacrylates (methyl methacrylate, n‐butyl methacrylate, and benzyl methacrylate) and of ionic liquid methacrylates (ILMAs). This demonstrates that this ionic liquid makes reaction conditions, which do not require the use of ultra‐dried solvents. The ILMAs were N‐[2‐(methacryloyloxy)ethyl]‐N,N‐dimethyl‐N‐alkylammonium bis(trifluoromethylsulfonyl)imides bearing methyl, ethyl, propyl, butyl, or hexyl substituents. Increasing size of the alkyl substituent at the cation results in decreasing glass transition temperature in case of both ionic liquid methacrylates and polymers derived of them. Furthermore, the glass transition temperature is significantly higher for these polymers compared with the ionic liquid methacrylates, and the effect of glass transition temperature reduction with increasing size of the alkyl substituent is stronger for the polymers. A mechanism was proposed explaining the catalytic function of the ionic liquid used as solvent for polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2849–2859  相似文献   

6.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

7.
The recombination of photolytically generated lophyl radicals has been investigated by UV/Vis spectroscopy in 1‐alkyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imides (NTf2) in comparison with 1‐butyl‐3‐methylimidazolium NTf2, dimethyl sulfoxide, and triacetin. The 1‐alkyl‐1‐methylpyrrolidinium‐based ionic liquids contain an alkyl substituent varying between butyl and decyl groups. Optically pure ionic liquids are used in these studies. Temperature‐dependent investigation of lophyl radical recombination shows an increase in the radical recombination rate with increasing temperature in each solvent, which is caused by decreasing viscosity with increasing temperature. Furthermore, the viscosity of the 1‐alkyl‐1‐methylpyrrolidinium NTf2 increases nearly linearly within the row of these ionic liquids. In contrast, the recombination of the photolytically generated lophyl radicals is significantly faster in the ionic liquids than in the traditional organic solvents under investigation. Moreover, the recombination rate increases with the length of the alkyl chain bound at the cation of the ionic liquid at a given temperature. This may be caused by an increase in the extent of lophyl radical recombination within the solvent cage. Solvent cage effects dominate in the case of lophyl radical recombination in ionic liquids bearing a long alkyl chain or if the temperature is near the melting temperature of the ionic liquid. The positive value of the activation entropy supports this hypothesis. The results obtained are important for discussion of bimolecular radical reactions in ionic liquids.  相似文献   

8.
The electrodeposition of soft magnetic iron and iron–silicon alloys for magnetic measurements is presented. The preparation of these materials in 1‐butyl‐1‐methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C with FeCl2 and FeCl2+SiCl4 was studied by using cyclic voltammetry. Constant‐potential electrolysis was carried out to deposit either Fe or FeSi, and deposits of approximately 10 μm thicknesses were obtained. By using scanning electron microscopy and X‐ray diffraction, the microstructure and crystallinity of the deposits were investigated. Grain sizes in the nanometer regime (50–80 nm) were found and the presence of iron–silicon alloys was verified. Frequency‐dependent magnetic polarizations, coercive forces, and power losses of some deposits were determined by using a digital hysteresis recorder. Corresponding to the small grain sizes, the coercive forces are around 950–1150 A m?1 and the power losses were at 6000 J m?3, which is much higher than in commercial Fe(3.2 wt %)Si electrical steel. Below a polarization of 1.8 T, the power losses are mainly caused by domain wall movements and, above 1.8 T, by rotation of magnetic moments as well as domain wall annihilation and recreation.  相似文献   

9.
Room‐temperature ionic liquids are of great current interest for electrochemical applications in material and energy science. Essential for understanding the electrochemical reactivity of these systems are detailed data on the structure and dynamics of the interfaces between these compounds and metal electrodes, which distinctly differ from those in traditional electrolytes. In situ studies are presented of Au(111) electrodes in 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSA]) by high‐speed scanning tunneling microscopy (video‐STM). [BMP][TFSA] is one of the best‐understood air and water stable ionic liquids. The measurements provide direct insights into the potential‐dependent molecular arrangement and surface dynamics of adsorbed [BMP]+ cations in the innermost layer on the negatively charged Au electrode surface. In particular, two distinct subsequent transitions in the adlayer structure and lateral mobility are observed with decreasing potential.  相似文献   

10.
The hydrophobic ionic liquid N‐butyl‐N‐methylpyrrolidinium bis((trifluoromethyl)sulfonyl)amide (BMP‐TFSA IL), which contains a series of flexible ionophores of polypyridine‐type small molecules or two rigid ionophores of peripherally pyridine‐modified PAMAM dendrimers, was used to extract cupric ions from aqueous solutions. The polypyridine‐type ionophores show good selectivity toward cupric ions at pH 2. The selectivity is affected by the spacing between the two amino groups. However, the pyridine‐modified dendrimers showed poor selectivity, although their extraction efficiency still depended on the pH of the aqueous solution. The ionic liquids that contained small molecular ionophores and their dendrimer analogs were reused after acid washing or electrochemical reduction. During acid washing, the nitrogen atoms of the ionophores were protonated to release the cupric ions into the aqueous phase, and the copper atoms were deposited onto the electrode surface during the electrochemical reduction accompanied by the regeneration of the ionophores.  相似文献   

11.
A dicationic ruthenium–alkylidene complex [Ru(dmf)3(IMesH2)(?CH‐2‐(2‐PrO)‐C6H4)][(BF4)2] ( 1 ; IMesH2=1,3‐dimesitylimidazolin‐2‐ylidene) has been prepared and used in continuous metathesis reactions by exploiting supported ionic‐liquid phase (SILP) technology. For these purposes, ring‐opening metathesis polymerization (ROMP)‐derived monoliths were prepared from norborn‐2‐ene, tris(norborn‐5‐ene‐2‐ylmethyloxy)methylsilane, and [RuCl2(PCy3)2(CHPh)] (Cy=cyclohexyl) in the presence of 2‐propanol and toluene and surface grafted with norborn‐5‐en‐2‐ylmethyl‐N,N,N‐trimethylammonium tetrafluoroborate ([NBE‐CH2‐NMe3][BF4]). Subsequent immobilization of the ionic liquid (IL), 1‐butyl‐2,3‐dimethylimidazolium tetrafluoroborate ([BDMIM][BF4]), containing ionic catalyst 1 created the SILP catalyst. The use of a second liquid transport phase, which contained the substrate and was immiscible with the IL, allowed continuous metathesis reactions to be realized. High turnover numbers (TONs) of up to 3700 obtained in organic solvents for the ring‐closing metathesis (RCM) of, for example, N,N‐diallyltrifluoroacetamide, diethyl diallylmalonate, diethyl di(methallyl)malonate, tert‐butyl‐N,N‐diallylcarbamate, N,N‐diallylacetamide, diphenyldiallylsilane, and 1,7‐octadiene, as well as in the self‐metathesis of methyl oleate, could be further increased by using biphasic conditions with [BDMIM][BF4]/heptane. Under continuous SILP conditions, TONs up to 900 were observed. Due to the ionic character of the initiator, catalyst leaching into the transport phase was very low (<0.1 %). Finally, the IL can, together with decomposed catalyst, be removed from the monolithic support by flushing with methanol. Upon reloading with [BDMIM][BF4]/ 1 , the recycled support material again qualified for utilization in continuous metathesis reactions.  相似文献   

12.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The synthesis of poly(glycolic acid) (PGA) by polyesterification of glycolic acid was studied using ionic liquids, mainly 1,3‐dialkylimidazolium salts, as reaction media. The 1H NMR spectra of PGA oligomers were assigned and end‐group signals were used to follow the reaction. Low PGA yields were obtained by the direct polyesterification of glycolic acid at 200–240 °C, because of monomer evaporation during the reaction. On the other hand, PGAs of DP n up to 45 were obtained by the postpolycondensation of a preformed oligomer in 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIm+Tf2N?). The precipitation of PGA in reaction medium at long reaction times limited the achievable molar mass. Rate constants were determined for catalyzed and noncatalyzed reactions, assuming a second‐order reaction mechanism. The efficiency of esterification catalysts such as Zn(OAc)2 was low in these media, as only about twofold increases in reaction rate were observed. This was assigned to the preferential interaction of Zn2+ with ionic liquid anion instead of the polymer carboxylic acid end‐groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3025–3035, 2006  相似文献   

14.
Aqueous solutions of a series of monodisperse poly(N‐isopropylacrylamide)s end‐labeled with n‐butyl‐1‐pyrene at one or both chain ends (Pyn‐PNIPAMs with n = 1 or 2) were studied by turbidimetry, light scattering, and fluorescence. For a given polymer concentration and heating rate, the cloud point (Tc) of an aqueous Pyn‐PNIPAM solution, determined by turbidimetry, was found to increase with the number‐average molecular weight (Mn) of the polymer. The steady‐state fluorescence spectra and time‐resolved fluorescence decays of Pyn‐PNIPAM aqueous solutions were analyzed and all parameters retrieved from these analyses were found to be affected as the solution temperature passed through Tc, the solution cloud point, and Tm, the temperature where dehydration of PNIPAM occurred. The trends obtained by fluorescence to characterize the aqueous Pyn‐PNIPAM solutions as a function of temperature were found to be consistent with the model proposed for telechelic PNIPAM by Koga et al. in 2006. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 308–318  相似文献   

15.
N‐Alkyl‐N‐methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium‐containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2‐ thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight to twenty carbon atoms (n=8, 10–20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X‐ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self‐assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium‐containing mesogens, luminescence can be induced by dissolving them in an ionic liquid matrix. The europium‐containing compound shows intense red photoluminescence with high colour purity.  相似文献   

16.
In the search for uranium‐based ionic liquids, tris(N,N‐dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1‐butyl‐3‐methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra‐, penta‐, hexa‐, and heptamethylenedithiocarbamates, N,N‐diethyldithiocarbamate, N‐methyl‐N‐propyldithiocarbamate, N‐ethyl‐N‐propyldithiocarbamate, and N‐methyl‐N‐butyldithiocarbamate have been explored. X‐ray single‐crystal diffraction allowed unambiguous structural characterization of all compounds except N‐methyl‐N‐butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X‐ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase‐transition behavior depending on the N,N‐dialkyldithiocarbamato ligand with the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N‐dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N‐methyl‐N‐propyldithiocarbamato)uranylate, tris(N‐ethyl‐N‐propyldithiocarbamato)uranylate, and tris(N‐methyl‐N‐butyldithiocarbamato)uranylate, lead to the formation of (room‐temperature) ionic liquids, which confirms that low‐symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.  相似文献   

17.
Two N‐donor‐functionalised ionic liquids (ILs), 1‐ethyl‐1,4‐dimethylpiperazinium bis(trifluoromethylsulfonyl)amide ( 1 ) and 1‐(2‐dimethylaminoethyl)‐dimethylethylammonium bis(trifluoromethylsulfonyl)amide ( 2 ), were synthesised and their electrochemical and transport properties measured. The data were compared with the benchmark system, N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ( 3 ). Marked differences in thermal and electrochemical stability were observed between the two tertiary‐amine‐functionalised salts and the non‐functionalised benchmark. The former are up to 170 K and 2 V less stable than the structural counterpart lacking a tertiary amine function. The ion self‐diffusion coefficients (Di) and molar conductivities (Λ) are higher for the IL with an open‐chain cation ( 2 ) than that with a cyclic cation ( 1 ), but less than that with a non‐functionalised, heterocyclic cation ( 3 ). The viscosities (η) show the opposite behaviour. The Walden [Λ∝(1/η)t] and Stokes–Einstein [Di/T)∝(1/η)t] exponents, t, are very similar for the three salts, 0.93–0.98 (±0.05); that is, the self‐diffusion coefficients and conductivity are set by η. The Di for 1 and 2 are the same, within experimental error, at the same viscosity, whereas Λ for 1 is approximately 13 % higher than that of 2 . The diffusion and molar conductivity data are consistent, with a slope of 0.98±0.05 for a plot of ln(ΛT) against ln(D++D?). The Nernst–Einstein deviation parameters (Δ) are such that the mean of the two like‐ion VCCs is greater than that of the unlike ions. The values of Δ are 0.31, 0.36 and 0.42 for 3 , 1 and 2 , respectively, as is typical for ILs, but there is some subtlety in the ion interactions given 2 has the largest value. The distinct diffusion coefficients (DDC) follow the order ${D{{{\rm d}\hfill \atop - - \hfill}}}$ <${D{{{\rm d}\hfill \atop ++\hfill}}}$ <${D{{{\rm d}\hfill \atop +- \hfill}}}$ , as is common for [Tf2N]? salts. The ion motions are not correlated as in an electrolyte solution: instead, there is greater anti‐correlation between the velocities of a given anion and the overall ensemble of anions in comparison to those for the cationic analogue, the anti‐correlation for the velocities of which is in turn greater than that for a given ion and the ensemble of oppositely charged ions, an observation that is due to the requirement for the conservation of momentum in the system. The DDC also show fractional SE behaviour with t~0.95.  相似文献   

18.
The synthesis of a new imide type anion, methylcarbonate(trifluoromethylsulfonyl)imide (MCTFSI) is described and the physicochemical properties of its sodium and N‐butyl‐N‐methyl pyrrolidinium salts as well as structural information obtained by X‐ray diffraction studies of the sodium salt are discussed in terms of charge delocalisation, coordination chemistry and electrochemical behaviour with respect to the analogous imdides bis(trifluoromethanesulfonyl)imide (TFSI) and bis(fluorosulfonyl)imide (FSI). The insight obtained from studying the new anion informs and reemphasizes the concept of weakly coordinating anions and coordination chemistry in designing electrolyte salts.  相似文献   

19.
Vapor‐ and gas‐responsive ionic liquids (ILs) comprised of cationic metal‐chelate complexes and bis(trifluoromethanesulfonyl)imide (Tf2N) have been prepared, namely, [Cu(acac)(BuMe3en)][Tf2N] ( 1 a ), [Cu(Bu‐acac)(BuMe3en)][Tf2N] ( 1 b ), [Cu(C12‐acac)(Me4en)][Tf2N] ( 1 c ), [Cu(acac)(Me4en)][Tf2N] ( 1 d ), and [Ni(acac)(BuMe3en)][Tf2N] ( 2 a ) (acac=acetylacetonate, Bu‐acac=3‐butyl‐2,4‐pentanedionate, C12‐acac=3‐dodecyl‐2,4‐pentanedionate, BuMe3en=N‐butyl‐N,N′,N′‐tetramethylethylenediamine, and Me4en=N,N,N′,N′‐trimethylethylenediamine). These ILs exhibited reversible changes in color, thermal properties, and magnetic properties in response to organic vapors and gases. The CuII‐containing ILs are purple and turn blue‐purple to green when exposed to organic vapors, such as acetonitrile, methanol, and DMSO, or ammonia gas. The color change is based on the coordination of the vapor molecules to the cation, and the resultant colors depend on the coordination strength (donor number, DN) of the vapor molecules. The vapor absorption caused changes in the melting points and viscosities, leading to alteration in the phase behaviors. The IL with a long alkyl chain ( 1 d ) transitioned from a purple solid to a brown liquid at its melting point. The NiII‐containing IL ( 2 a ) is a dark red diamagnetic liquid, which turned into a green paramagnetic liquid by absorbing vapors with high DN. Based on the equilibrium shift from four‐ to six‐coordinated species, the liquid exhibited thermochromism and temperature‐dependent magnetic susceptibility after absorbing methanol.  相似文献   

20.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号