首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hua Yang  Yao Ding  Ping Li 《Electrophoresis》2013,34(9-10):1273-1294
Microemulsion electrokinetic chromatography (MEEKC) is a CE separation technique, which utilizes buffered microemulsions as the separation media. In the past two decades, MEEKC has blossomed into a powerful separation technique for the analysis of a wide range of compounds. Pseudostationary phase composition is so critical to successful resolution in EKC, and several variables could be optimized including surfactant/co‐surfactant/oil type and concentration, buffer content, and pH value. Additionally, MEEKC coupled with online sample preconcentration approaches could significantly improve the detection sensitivity. This review comprehensively describes the development of MEEKC from the period 1991 to 2012. Areas covered include basic theory, microemulsion composition, improving resolution and enhancing sensitivity methods, detection techniques, and applications of MEEKC.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Electrophoresis 2014, 35, 1504–1508. DOI: 10.1002/elps.201400001 Combination of DNA biobarcode assay with micro‐capillary electrophoretic analysis on a chip allows us to perform breast and colorectal cancer cell detection with high sensitivity, multiplexity, and accuracy.

  相似文献   


12.
13.
14.
15.
16.
17.
《Electrophoresis》2017,38(13-14):1656-1658
  相似文献   

18.
19.
20.
Electrophoresis 2014, 35, 1144–1151. DOI: 10.1002/elps.201300501 The center stage of nanopore sequencing is to extract gene information from the translocation of DNA through a nanopore. Graphene nanopore technology has been promising ultra‐high resolution for gene sequencing owing to the atomic thickness and excellent electronic properties of the graphene monolayer. By filtering out the thermal noise of ionic current, the instantaneous conformational variations of DNA in a graphene nanopore could be unveiled from undulates of the blocked ionic current, because of the spatial blockage effect of DNA against ionic migration. It supplies a theoretical basis for the monitor of dynamical information of DNA in a graphene nanopore during sequencing from the ionic current fluctuation.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号