首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of protein loop conformations without any prior knowledge (ab initio prediction) is an unsolved problem. Its solution will significantly impact protein homology and template‐based modeling as well as ab initio protein‐structure prediction. Here, we developed a coarse‐grained, optimized scoring function for initial sampling and ranking of loop decoys. The resulting decoys are then further optimized in backbone and side‐chain conformations and ranked by all‐atom energy scoring functions. The final integrated technique called loop prediction by energy‐assisted protocol achieved a median value of 2.1 Å root mean square deviation (RMSD) for 325 12‐residue test loops and 2.0 Å RMSD for 45 12‐residue loops from critical assessment of structure‐prediction techniques (CASP) 10 target proteins with native core structures (backbone and side chains). If all side‐chain conformations in protein cores were predicted in the absence of the target loop, loop‐prediction accuracy only reduces slightly (0.2 Å difference in RMSD for 12‐residue loops in the CASP target proteins). The accuracy obtained is about 1 Å RMSD or more improvement over other methods we tested. The executable file for a Linux system is freely available for academic users at http://sparks‐lab.org . © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Current ab initio structure‐prediction methods are sometimes able to generate families of folds, one of which is native, but are unable to single out the native one due to imperfections in the folding potentials and an inability to conduct thorough explorations of the conformational space. To address this issue, here we describe a method for the detection of statistically significant folds from a pool of predicted structures. Our approach consists of clustering and averaging the structures into representative fold families. Using a metric derived from the root‐mean‐square distance (RMSD) that is less sensitive to protein size, we determine whether the simulated structures are clustered in relation to a group of random structures. The clustering method searches for cluster centers and iteratively calculates the clusters and their respective centroids. The centroid interresidue distances are adjusted by minimizing a potential constructed from the corresponding average distances of the cluster structures. Application of this method to selected proteins shows that it can detect the best fold family that is closest to native, along with several other misfolded families. We also describe a method to obtain substructures. This is useful when the folding simulation fails to give a total topology prediction but produces common subelements among the structures. We have created a web server that clusters user submitted structures, which can be found at http://bioinformatics.danforthcenter.org/services/scar. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 339–353, 2001  相似文献   

3.
Two‐dimensional electronic spectroscopy (2DES) is a cutting‐edge technique for investigating with high temporal resolution energy transfer, structure, and dynamics in a wide range of systems in physical chemistry, energy sciences, biophysics, and biocatalysis. However, the interpretation of 2DES is challenging and requires computational modeling. This perspective provides a roadmap for the development of computational tools that could be routinely applied to simulate 2DES spectra of multichromophoric systems active in the UV region (2DUV) using state‐of‐the‐art ab initio electronic structure methods within a quatum mechanics/molecular mechanics (QM/MM) scheme and the sum‐over‐states (SOS) approach (here called SOS//QM/MM). Multiconfigurational and multireference perturbative methods, such as the complete active space self‐consistent field and second‐order multireference perturbation theory (CASPT2) techniques, can be applied to reliably calculate the electronic properties of multichromophoric systems. Hybrid QM/MM method and molecular dynamics techniques can be used to assess environmental and conformational effects, respectively, that shape the 2D electronic spectra. DNA and proteins are important biological targets containing UV chromophores. We report ab initio simulation of 2DUV spectra of a cyclic tetrapeptide containing two interacting aromatic side chains, a model system for the study of protein structure and dynamics by means of 2DUV spectroscopy. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment‐based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well‐designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β‐sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called “Multiobjective evolutionary algorithms with many tables” (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG, I‐PAES, and Quark) that use different levels of earlier knowledge. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Protein–protein docking methods are spotlighted for their roles in providing insights into protein–protein interactions in the absence of full structural information by experiment. GalaxyTongDock is an ab initio protein–protein docking web server that performs rigid-body docking just like ZDOCK but with improved energy parameters. The energy parameters were trained by iterative docking and parameter search so that more native-like structures are selected as top rankers. GalaxyTongDock performs asymmetric docking of two different proteins (GalaxyTongDock_A) and symmetric docking of homo-oligomeric proteins with Cn and Dn symmetries (GalaxyTongDock_C and GalaxyTongDock_D). Performance tests on an unbound docking benchmark set for asymmetric docking and a model docking benchmark set for symmetric docking showed that GalaxyTongDock is better or comparable to other state-of-the-art methods. Experimental and/or evolutionary information on binding interfaces can be easily incorporated by using block and interface options. GalaxyTongDock web server is freely available at http://galaxy.seoklab.org/tongdock . © 2019 Wiley Periodicals, Inc.  相似文献   

6.
Geometric and energetic properties of a diamide of serine, HCO‐NH‐L ‐CH(CH2OH)CO‐NH2, are investigated by standard methods of computational quantum chemistry. Similarly to other amino acid residues, conformational properties of HCO‐L ‐Ser‐NH2 can be derived from the analysis of its E=E(ϕ,ψ;χ12) hypersurface. Reoptimization of 44 RHF/3‐21G conformers at the RHF/6‐311++G** level resulted in 36 minima. For all conformers, geometrical properties, including variation of H‐bond parameters and structural shifts in the torsional space, are thoroughly investigated. Results from further single‐point energy calculations at the RHF, DFT, and MP2 levels, performed on the entire conformational data set, form a database of 224 energy values, perhaps the largest set calculated so far for any single amino acid diamide. A comprehensive analysis of this database reveals significant correlation among energies obtained at six levels of ab initio theory. Regression parameters provide an opportunity for extrapolation in order to predict the energy of a conformer at a high level by doing explicit ab initio computations only for a few selected conformers. The computed conformational and relative energy data are compared with structural and occurrence results derived from a nonhomologous protein database incorporating 1135 proteins. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 626–655, 2000  相似文献   

7.
We approached the solvatochromic transition observed in polysilane derivatives (poly[bis(4‐propoxybutyl)silylene] (PPBS)) from the standpoint of various quantum chemical treatments. It was found from conventional geometry optimizations at the levels of semiempirical and ab initio molecular orbital methods that a protonation to polysilane oligomers with side chain R = ? OCH3 results in the conformational change of Si‐backbone to a trans‐zigzag structure. Using the Elongation method, which was developed for efficient calculations of huge systems, it was demonstrated that a protonation could change the conformation of Si‐backbone to a trans‐zigzag structure over 10–14 Si atoms. In addition, ab initio calculations showed that the positive charge of a proton can delocalize into the Si‐backbone through a long side chain in PPBS. Positively charged polysilane oligomers provide a rotational barrier that prefers a trans‐zigzag structure, whereas neutral oligomers have a barrier that results to a random structure. This unique behavior of the charged polysilane oligomers should not be disregarded in understanding the mechanism of the solvatochromic transition in PPBS. In ab initio configuration interaction/Mφller‐Plesset through‐space/bond interaction analysis, it was found that such a unique behavior of the rotational barrier in polysilane oligomers could be explained by the effect of orbital delocalization through σ‐conjugation on the Si‐backbone. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 119–133, 2006  相似文献   

8.
Recent developments in fragment‐based methods make it increasingly feasible to use high‐level ab initio electronic structure techniques to molecular crystals. Such studies remain computationally demanding, however. Here, we describe a straightforward algorithm for exploiting space‐group symmetry in fragment‐based methods which often provides computational speed‐ups of several fold or more. This algorithm does not require a priori specification of the space group or symmetry operators. Rather, the symmetrically equivalent fragments are identified automatically by aligning the individual fragments along their principle axes of inertia and testing for equivalence with other fragments. The symmetry operators relating equivalent fragments can then be worked out easily. Implementation of this algorithm for computing energies, nuclear gradients with respect to both atomic coordinates and lattice parameters, and the nuclear hessian is described. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
In the crystal structures of the diastereoisomers of O‐tosylcinchonidine [(9R)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (I), and O‐tosylcinchonine [(9S)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (II), both C26H28N2O3S, both molecules are in an anti‐closed conformation and, in each case, the position of the aryl ring of the tosylate system is influenced by an intramolecular C—H...O hydrogen bond. The molecular packing in (I) is influenced by weak intermolecular C—H...O and C—H...π interactions. The crystal structure of (II) features C—H...π interactions and van der Waals forces only. The computational investigations using RHF/6–31G** ab initio and AM1 semi‐empirical methods performed for (I) and (II) and their protonated species show that the conformational and energetic parameters of the molecules are correlated with differences in their reactivity in hydrolysis to the corresponding 9‐epibases.  相似文献   

10.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

11.
12.
All‐atom sampling is a critical and compute‐intensive end stage to protein structural modeling. Because of the vast size and extreme ruggedness of conformational space, even close to the native structure, the high‐resolution sampling problem is almost as difficult as predicting the rough fold of a protein. Here, we present a combination of new algorithms that considerably speed up the exploration of very rugged conformational landscapes and are capable of finding heretofore hidden low‐energy states. The algorithm is based on a hierarchical workflow and can be parallelized on supercomputers with up to 128,000 compute cores with near perfect efficiency. Such scaling behavior is notable, as with Moore's law continuing only in the number of cores per chip, parallelizability is a critical property of new algorithms. Using the enhanced sampling power, we have uncovered previously invisible deficiencies in the Rosetta force field and created an extensive decoy training set for optimizing and testing force fields. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Procedures have been developed to generate molecular electrostatic potentials based on correlated wave function from ab initio or semiempirical electronic structure programs. A new algorithm for point-wise sampling of the potential is described and used to obtain partial atomic charges via a linear, least squares fit between classical and quantum mechanical electrostatic potentials. The proposed sampling algorithm is efficient and promises to introduce less rotational variance in the potential derived partial charges than algorithms applied previously. Electrostatic potentials and fitted atomic charges from ab initio (HF/6–31G* and MP2/6-31G*) and semiempirical (INDO/S; HF, SECI, and SDCI) wave functions are presented for the electronic ground (S0) and excited (1Lb, 1La) states of 3-methylindole. © 1992 by John Wiley & Sons, Inc.  相似文献   

14.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

15.
A complete overview of all possible periodic structures with characteristic H‐bonding patterns is provided for oligomers composed of γ‐amino acids (γ‐peptides) and their vinylogues by a systematic conformational search on hexamer model compounds employing ab initio MO theory at various levels of approximation (HF/6‐31G*, DFT/B3LYP/6‐31G*, SCRF/HF/6‐31G*, PCM//HF/6‐31G*). A wide variety of structures with definite backbone conformations and H‐bonds formed in forward and backward directions along the sequence was found in this class of foldamers. All formally conceivable H‐bonded pseudocycles between 7‐ and 24‐membered rings are predicted in the periodic hexamer structures, which are mostly helices. The backbone elongation in comparison to α‐ and β‐peptides allows several possibilities to realize identical H‐bonding patterns. In good agreement with experimental data, helical structures with 14‐ and 9‐membered pseudocycles are most stable. It is shown that the introduction of an (E)‐double bond into the backbone of the γ‐amino acid constituents, which leads to vinylogous γ‐amino acids, supports the folding into helices with larger H‐bonded pseudocycles in the resulting vinylogous γ‐peptides. Due to the considerable potential for secondary‐structure formation, γ‐peptides and their vinylogues might be useful tools in peptide and protein design and even in material sciences.  相似文献   

16.
The conformational analysis of four C2-amido and C7-ureido functionalised indole anion receptors was performed by a combination of heteronuclear NMR spectroscopy and ab initio quantum mechanical calculations. NOE experiments showed that anti–anti conformation across C2–C2α and C7–N7α bonds is predominant in acetone solution in the absence of anions. Upon anion binding to receptors, syn–syn conformation becomes predominant. The conformational changes upon anion binding are in good agreement with energetic preferences established by ab initio calculations. Chemical shift changes induced by interaction of anions suggest that binding of chloride and bromide anions occurs primarily to H1 and H7α protons. Nitrate anions favour interaction with H7α and H7γ ureido protons, whereas acetate anions interact strongly with all four available hydrogen bond donor groups.  相似文献   

17.
The oxidation of the trans,cis‐( 2 ) and trans,trans‐epoxides ( 3 ) of differently substituted (Z)‐3‐arylidene‐1‐thioflavan‐4‐ones ( 1 ) with dimethyldioxirane (DMD) yielded the appropriate sulfoxides ( 4, 5 ) and sulfones ( 6, 7 ). The structures were elucidated by the extensive application of one‐ and two‐dimensional 1H, 13C and 17O NMR spectroscopy. The conformational analysis was achieved by the application of 3J(C,H) coupling constants, NOESY responses and ab initio calculations. The preferred ground‐state conformers (twisted envelope‐A, twisted envelope‐B for 6 and twisted envelope‐A, envelope‐B for 7 ) were obtained as global minima of the theoretical ab initio MO study and also the examination of the 17O and 13C chemical shifts, calculated for the global minima structures of the sulfone isomers by the GIAO method. Analogous results, obtained for the sulfoxide isomers ( 4, 5 ), not only led to the preferred conformers but also gave evidence for the trans arrangement of the 2‐Ph group and the oxygen atom of the S?O group. Chemical shift differences between the isomers, sulfoxides and sulfones were corroborated by ab initio calculations of the anisotropic effects of the oxirane ring and the S?O and SO2 groups. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Structure‐based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this “ab initio” approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT‐Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD‐E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding‐homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org . © 2016 Wiley Periodicals, Inc.  相似文献   

19.
We provide an assessment of a computational strategy for protein structure refinement that combines self‐guided Langevin dynamics with umbrella‐potential biasing replica exchange using the radius of gyration as a coordinate (Rg‐ReX). Eight structurally nonredundant proteins and their decoys were examined by sampling conformational space at room temperature using the CHARMM22/GBMV2 force field to generate the ensemble of structures. Two atomic statistical potentials (RWplus and DFIRE) were analyzed for structure identification and compared to the simulation force‐field potential. The results show that, while the Rg‐ReX simulations were able to sample conformational basins that were more structurally similar to the X‐ray crystallographic structures than the starting first‐order ranked decoys, the potentials failed to detect these basins from refinement. Of the three potential functions, RWplus yielded the highest accuracy for recognition of structures that refined to an average of nearly 20% increase in native contacts relative to the starting decoys. The overall performance of Rg‐ReX is compared to an earlier study of applying temperature‐based replica exchange to refine the same decoy sets and highlights the general challenge of achieving consistently the sampling and detection threshold of 70% fraction of native contacts. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
A series of novel compounds containing a 3‐fluoro‐4‐cyanophenoxy group were synthesized and fully characterized by IR and 1H NMR, and their mesomorphic properties were studied. Seven compounds exhibited enantiotropic nematic phases and three compounds exhibited monotropic nematic phases, as confirmed by differential scanning calorimetry and polarizing optical microscopy. Selected properties of the liquid crystalline compounds synthesized were calculated by ab initio methods at a HF/6‐31G level. The bond lengths, bond angles and dihedral angles of the fragments with the same structure change little between the compounds. All the compounds with a terminal alkoxy chain approached a planar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号