首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current existing main nuclear thermal‐hydraulics (T‐H) system analysis codes, such as RALAP5, TRACE, and CATHARE, play a crucial role in the nuclear engineering field for the design and safety analysis of nuclear reactor systems. However, two‐fluid model used in these T‐H system analysis codes is ill posed, easily leading to numerical oscillations, and the classical first‐order methods for temporal and special discretization are widely employed for numerical simulations, yielding excessive numerical diffusion. Two‐fluid seven‐equation two‐pressure model is of particular interest due to the inherent well‐posed advantage. Moreover, high‐order accuracy schemes have also attracted great attention to overcome the challenge of serious numerical diffusion induced by low‐order time and space schemes for accurately simulating nuclear T‐H problems. In this paper, the semi‐implicit solution algorithm with high‐order accuracy in space and time is developed for this well‐posed two‐fluid model and the robustness and accuracy are verified and assessed against several important two‐phase flow benchmark tests in the nuclear engineering T‐H field, which include two linear advection problems, the oscillation problem of the liquid column, the Ransom water faucet problem, the reversed water faucet problem, and the two‐phase shock tube problem. The following conclusions are achieved. (1) The proposed semi‐implicit solution algorithm is robust in solving two‐phase flows, even for fast transients and discontinuous solutions. (2) High‐order schemes in both time and space could prevent excessive numerical diffusion effectively and the numerical simulation results are more accurate than those of first‐order time and space schemes, which demonstrates the advantage of using high‐order schemes.  相似文献   

2.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A new PLIC‐VOF method is proposed to track deformable particles, such as bubbles and liquid droplets, that can be smaller than the grid spacing. The idea is to replace the surface normal (SN) calculation used in the PLIC, by the SN vector obtained from partial differential equations that are solved together with the advection algorithm. The equations for the evolution of SN vector are derived, and examined by using the first‐order and the second‐order upwind schemes. Since the normal vector is defined in every cell, the method generally improves the accuracy at low grid resolution. It is found that a normal vector of zero magnitude is located at the centroid of a particle, to second‐order accuracy for small particles. The motion of a subgrid particle is controlled by the arrival of the zero vector in the present PLIC/SN method, so that the particle can be translated at the right speed without any additional treatment. This has been numerically verified by simulating a particle of one‐tenth of grid spacing traveling in three different directions, in addition to a few typical test cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new two‐dimensional interface reconstruction method that ensures continuity of the interface and preserves volume fractions is presented here. It is made of two steps, first, the minimization of a cost functional based on volume fractions least square errors by using dynamic programming, a fast and efficient scheme well known in image processing, and then a local correction phase. In each cell, the interface is made of two line segments joining two edges. This new interface reconstruction method, called Dynamic Programming Interface Reconstruction has been coupled with various advection schemes, among them the Lagrange + remap scheme. With a reasonable computational cost, it has been observed in various test cases that Dynamic Programming Interface Reconstruction is more accurate and less diffusive compared with other existing classical reconstruction methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A method is introduced to discretize irregular and complex two‐dimensional fractured media. The geometry of the fractured media is first analysed by searching and treating the complex configurations. Based on that, the method generated a good mesh quality and allows for including finer grids. An incompressible two‐phase flow problem is solved to compare the developed method and a public method based on the approximation of a 1D fracture by the edges of a 2D finite element grid of the porous media. The comparison showed that the developed method (i) represents better the fractured domain by maintaining the geometric integrity of input surfaces and geologic data, (ii) provides, for sample and complex fractured domains, excellent and more accurate results, and (iii) is much less sensitive to the grid sizes. Furthermore, the method has to be more efficient than the other methods for transport problems and has to provide better predictable results; this is mainly based on point (ii) and because the method produces optimal triangular grids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the performance of preconditioned Krylov subspace methods used in a previously presented two‐fluid model developed for the simulation of separated and intermittent gas–liquid flows. The two‐fluid model has momentum and mass balances for each phase. The equations comprising this model are solved numerically by applying a two‐step semi‐implicit time integration procedure. A finite difference numerical scheme with a staggered mesh is used. Previously, the resulting linear algebraic equations were solved by a Gaussian band solver. In this study, these algebraic equations are also solved using the generalized minimum residual (GMRES) and the biconjugate gradient stabilized (Bi‐CGSTAB) Krylov subspace iterative methods preconditioned with incomplete LU factorization using the ILUT(p, τ) algorithm. The decrease in the computational time using the iterative solvers instead of the Gaussian band solver is shown to be considerable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
We derive a partially analytical Roe scheme with wave limiters for the compressible six‐equation two‐fluid model. Specifically, we derive the Roe averages for the relevant variables. First, the fluxes are split into convective and pressure parts. Then, independent Roe conditions are stated for these two parts. These conditions are successively reduced while defining acceptable Roe averages. For the convective part, all the averages are analytical. For the pressure part, most of the averages are analytical, whereas the remaining averages are dependent on the thermodynamic equation of state. This gives a large flexibility to the scheme with respect to the choice of equation of state. Furthermore, this model contains nonconservative terms. They are a challenge to handle right, and it is not the object of this paper to discuss this issue. However, the Roe averages presented in this paper are fully independent from how those terms are handled, which makes this framework compatible with any treatment of nonconservative terms. Finally, we point out that the eigenspace of this model may collapse, making the Roe scheme inapplicable. This is called resonance. We propose a fix to handle this particular case. Numerical tests show that the scheme performs well. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the advection upwinding splitting method (AUSM) is modified for the resolution of two‐phase mixtures with interfaces. The compressible two‐fluid model proposed by Saurel and Abgrall is chosen as the model equations. Dense and dilute phases are described in terms of the volume fraction and equations of state to represent multi‐phase mixtures. Test cases involving an air–water shock tube, water faucet, and dilute particulate turbulent flows through a 90° bend are used to verify the current work. It is shown that the AUSM based on flux differences (AUSMD) contains the mechanism to correctly capture the contact discontinuity and interfaces between phases. In addition, a successful application to dilute particulate turbulence flows by the AUSMD is demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical methods for the Baer–Nunziato model of compressible two‐phase flow have attracted much attention in recent years. In this paper, a two‐phase Bhatnagar–Gross–Krook (BGK) model is constructed in which the non‐conservative terms in the Baer–Nunziato model are considered as the external forces and the collisions both with particles of their phases and other phases are taken into consideration. On the basis of this BGK model, the so‐called modified Baer–Nunziato model is derived and a gas‐kinetic scheme for this modified model is presented. The distribution functions are constructed at the cell interface based on the integral solutions of the BGK equations for both phases. Then, numerical fluxes can be obtained by taking moments of the distribution functions, and non‐conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the iterative processes in the exact Riemann solvers are eliminated but also the collisions with the particles of other phases are taken into account. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We present a new closure model for single fluid, multi‐material Lagrangian hydrodynamics and its application to high‐order finite element discretizations of these equations 1 . The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high‐order variational generalization of the method of Tipton 2 . This computation is defined by the notion of partial non‐instantaneous pressure equilibration, while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one‐dimensional two‐material problems, followed by two‐dimensional and three‐dimensional multi‐material high‐velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
We consider the Galerkin finite element method (FEM) for the incompressible magnetohydrodynamic (MHD) equations in two dimension. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level FEM with a stabilizing subgrid of a single node is described and its application to the MHD equations is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems including the MHD cavity flow and the MHD flow over a step. The results show that the proper choice of the subgrid node is crucial to get stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Furthermore, the approximate solutions obtained show the well‐known characteristics of the MHD flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A two‐phase flow model, which solves the flow in the air and water simultaneously, is presented for modelling breaking waves in deep and shallow water, including wave pre‐breaking, overturning and post‐breaking processes. The model is based on the Reynolds‐averaged Navier–Stokes equations with the k ?ε turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm is utilised for the pressure‐velocity coupling and the air‐water interface is modelled by the interface capturing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating overturning waves on a sloping beach and over a reef, and deep‐water breaking waves in a periodic domain, in which good agreement between numerical results and available experimental measurements for the water surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash‐up during wave breaking have been captured by the two‐phase flow model, which demonstrates the capability of the model to simulate free surface flow and wave breaking problems.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A model for multidimensional compressible two‐phase flow with pressure and velocity relaxations based on the theory of thermodynamically compatible system is extended to study liquid–gas flows with cavitation. The model assumes for each phase its own pressure and velocity, while a common temperature is considered. The governing equations form a hyperbolic system in conservative form and are derived through the theory of a thermodynamically compatible system. The phase pressure‐equalizing process and the interfacial friction are taken into account in the balance laws for the volume fractions of one phase and for the relative velocity by adding two relaxation source terms, while the phase transition is introduced into the model considering in the balance equation for the mass of one phase the relaxation of the Gibbs free energies of the two phases. A modification of the central finite‐volume Kurganov–Noelle–Petrova method is adopted in this work to solve the homogeneous hyperbolic part, while the relaxation source terms are treated implicitly. In order to investigate the effect of the mass transfer in the solution, a 1D cavitation tube problem is presented. In addition, two 2D numerical simulations regarding cavitation problem are also studied: a cavitating Richtmyer–Meshkov instability and a laser‐induced cavitation problem. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a general optimal formulation for the dynamic Smagorinsky subgrid‐scale (SGS) stress model is reported. The Smagorinsky constitutive relation has been revisited from the perspective of functional variation and optimization. The local error density of the dynamic Smagorinsky SGS model has been minimized directly to determine the model coefficient CS. A sufficient and necessary condition for optimizing the SGS model is obtained and an orthogonal condition (OC), which governs the instantaneous spatial distribution of the optimal dynamic model coefficient, is formulated. The OC is a useful general optimization condition, which unifies several classical dynamic SGS modelling formulations reported in the literature. In addition, the OC also results in a new dynamic model in the form of a Picard's integral equation. The approximation tensorial space for the projected Leonard stress is identified and the physical meaning for several basic grid and test‐grid level tensors is systematically discussed. Numerical simulations of turbulent Couette flow are used to validate the new model formulation as represented by the Picard's integral equation for Reynolds numbers ranging from 1500 to 7050 (based on one half of the velocity difference of the two plates and the channel height). The relative magnitudes of the Smagorinsky constitutive parameters have been investigated, including the model coefficient, SGS viscosity and filtered strain rate tensor. In general, this paper focuses on investigation of fundamental mathematical and physical properties of the popular Smagorinsky constitutive relation and its related dynamic modelling optimization procedure. Copyright © 2005 John Wiley & Sons Ltd.  相似文献   

19.
We present a theoretical solution for the Riemann problem for the five‐equation two‐phase non‐conservative model of Saurel and Abgrall. This solution is then utilized in the construction of upwind non‐conservative methods to solve the general initial‐boundary value problem for the two‐phase flow model in non‐conservative form. The basic upwind scheme constructed is the non‐conservative analogue of the Godunov first‐order upwind method. Second‐order methods in space and time are then constructed via the MUSCL and ADER approaches. The methods are systematically assessed via a series of test problems with theoretical solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Godunov‐type algorithms are very attractive for the numerical solution of discontinuous flows. The reconstruction of the profile inside the cells is crucial to scheme performance. The non‐linear generalization of the discontinuous profile method (DPM) presented here for the modelling of two‐phase flow in pipes uses a discontinuous reconstruction in order to capture shocks more efficiently than schemes using continuous functions. The reconstructed profile is used to define the Riemann problem at cell interfaces by averaging of the components of the variable in the base of eigenvectors over their domain of dependence. Intercell fluxes are computed by solving the Riemann problem with an approximate‐state solver. The adapted treatment of boundary conditions is essential to ensure the quality of the computational results and a specific procedure using virtual cells at both extremities of the computational domain is required. Internal boundary conditions can be treated in the same way as external ones. Application of the DPM to test cases is shown to improve the quality of computational results significantly. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号