首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear‐dependent cancer cell capture in a novel hybrid DEP–immunocapture system consisting of interdigitated electrodes fabricated in a Hele‐Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate‐specific membrane antigen expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP–immunocapture systems for high‐efficiency CTC capture with enhanced purity.  相似文献   

2.
Electrophoresis 2014, 35, 1504–1508. DOI: 10.1002/elps.201400001 Combination of DNA biobarcode assay with micro‐capillary electrophoretic analysis on a chip allows us to perform breast and colorectal cancer cell detection with high sensitivity, multiplexity, and accuracy.

  相似文献   


3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
《Electrophoresis》2017,38(13-14):1656-1658
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号