首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two methods are introduced for the implementation of wall‐stress boundary conditions in variational‐multiscale large‐eddy simulations. In both methods, the boundary conditions are applied weakly using an interior‐penalty approach, where the discretization parameters are determined using information from a wall‐stress model. The performance of the methods is compared with that of hard Dirichlet boundary conditions for turbulent channel flows. A convergence study is performed for the second of the methods, which is found to be the most viable for practical application. Sources of error affecting the convergence study are discussed and quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A two‐dimensional lattice model has been developed to describe the influence of vegetation on the turbulent flow structure in an open channel. The model includes the influence of vegetation density on the frictional effect of the channel bed and walls. For the walls, a semi‐slip boundary condition has been considered as an alternative to overcome the no‐slip boundary condition limitations in turbulent flows. The drag stress exerted by the flow on the vegetation as well as the gravity effect has also been taken into account. The proposed lattice model has been used to simulate the experimental results reported from the study of the influence of alternate vegetated zones on the open‐channel flow. The results show that the lattice model approach is a valid tool for describing these kinds of flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Calculations of mean velocities and Reynolds stresses are reported for the recirculating flow established in the wake of two‐dimensional polynomial‐shaped obstacles that are symmetrical about a vertical axis and mounted in the water channel downstream of a fully developed channel flow for Re=6×104. The study involves calculations of mean and fluctuating flow properties in the streamwise and spanwise directions and include comparisons with experimental data [Almeida GP, Durão DFG, Heitor MV. Wake flows behind two‐dimensional model hills. Experimental Thermal and Fluid Science 1993; 7: 87–101] for flow around a single obstacle with data resulting from the interaction of consecutive obstacles, using two versions of the low‐Reynolds number differential second‐moment (DSM) closure model. The results include analysis of the turbulent stresses in local flow co‐ordinates and reveal flow structure qualitatively similar to that found in other turbulent flows with a reattachment zone. It is found that the standard isotropization of production model (IPM), based on that proposed by Gibson and Launder [Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics 1978; 86(3): 191–511], with the incorporation of the wall reflection model of Craft and Launder [New wall‐reflection model applied to the turbulent impinging jet. AIAA Journal 1992; 32(12): 2970–2972] predicts the mean velocities quite well, but underestimates the size of the recirculation region and turbulent quantities in the shear layer. These inadequacies are circumvented by adopting a new cubic Reynolds stress closure scheme based on that more recently developed by Craft and Launder [A Reynolds stress closure designed for complex geometries. International Journal of Heat and Fluid Flow 1996; 17: 245–254] which satisfies the two component limit (TCL) of turbulence. In this model the geometry‐specific quantities, such as the wall‐normal vector or wall distance, are replaced by invariant dimensionless gradient indicators. Also, the model captures the diverse behaviour of the different components of the stress dissipation, εij, near the wall and uses a novel decomposition for the fluctuating pressure terms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

7.
An improved near‐wall modeling for large‐eddy simulation using the immersed boundary method is proposed. It is shown in this study that the existing near‐wall modeling for the immersed boundary (IB) methods that imposes the velocity boundary condition at the IB node is not sufficient to enforce a correct wall shear stress at the IB node. A new method that imposes a shear stress condition through the modification of the subgrid scale‐eddy viscosity at the IB node is proposed. In this method, the subgrid eddy viscosity at the IB node is modified such that the viscous flux at the face adjacent to the IB node correctly approximates the total shear stress. The method is applied to simulate the fully developed turbulent flows in a plane channel and a circular pipe. It is demonstrated that the new method improves the prediction of the mean velocity and turbulence stresses in comparison with the existing wall modeling based solely on the velocity boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In the present study, we have proposed an immersed‐boundary finite‐volume method for the direct numerical simulation of flows with inertialess paramagnetic particles suspended in a nonmagnetic fluid under an external magnetic field without the need for any model such as the dipole–dipole interaction. In the proposed method, the magnetic field (or force) is described by the numerical solution of the Maxwell equation without current, where the smoothed representation technique is employed to tackle the discontinuity of magnetic permeability across the particle–fluid interface. The flow field, on the other hand, is described by the solution of the continuity and momentum equations, where the discrete‐forcing‐based immersed‐boundary method is employed to satisfy the no‐slip condition at the interface. To validate the method, we performed numerical simulations on the two‐dimensional motion of two and three paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and then compared the results with the existing finite‐element and semi‐analytical solutions. Comparison shows that the proposed method is robust in the direct simulation of such magnetic particulate flows. This method can be extended to more general flows without difficulty: three‐dimensional particulate flows, flows with a great number of particles, or flows under an arbitrary external magnetic field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The analysis and improvement of an immersed boundary method (IBM) for simulating turbulent flows over complex geometries are presented. Direct forcing is employed. It consists in interpolating boundary conditions from the solid body to the Cartesian mesh on which the computation is performed. Lagrange and least squares high‐order interpolations are considered. The direct forcing IBM is implemented in an incompressible finite volume Navier–Stokes solver for direct numerical simulations (DNS) and large eddy simulations (LES) on staggered grids. An algorithm to identify the body and construct the interpolation schemes for arbitrarily complex geometries consisting of triangular elements is presented. A matrix stability analysis of both interpolation schemes demonstrates the superiority of least squares interpolation over Lagrange interpolation in terms of stability. Preservation of time and space accuracy of the original solver is proven with the laminar two‐dimensional Taylor–Couette flow. Finally, practicability of the method for simulating complex flows is demonstrated with the computation of the fully turbulent three‐dimensional flow in an air‐conditioning exhaust pipe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports four different approaches to discretize the source terms for the simulation of one‐dimensional open‐channel flows with rapidly varied bottom topography using TVD‐MacCormack scheme. Compared with other high‐resolution shock‐capturing schemes, MacCormack‐type predictor–corrector method is easy to implement and does not present any additional difficulty in dealing with the source terms. To avoid the generation of artificial numerical waves, if the bottom topography shows strong variation, special treatment of the source terms is still required to eliminate or reduce the artificial numerical error caused by adding TVD corrections to the method. The computed results demonstrated that the improved surface gradient method is more suitable for simulating open‐channel flow with highly irregular bed topography by using the surface gradient instead of the depth gradient for TVD corrections and considering the balancing of the source terms and the flux gradients. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

15.
Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Time consuming meshing can be avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. This work presents applications of a recently proposed immersed boundary—body conformal enrichment method to the solution of the flow around complex shaped surfaces such as those of a metallic foam matrix. The method produces solutions of the flow satisfying accurately Dirichlet boundary conditions imposed on the immersed fluid/solid interface. The boundary of immersed objects is defined using a level‐set function, and the finite element discretization of interface elements is enriched with additional degrees of freedom, which are eliminated at element level. The method is first validated in the case of flow problems for which reference solutions on body‐conformal grids can be obtained: flow around an array of spheres and flow around periodic arrays of cylinders. Then, solutions are shown for the more complex flow inside a metallic foam matrix. A multiscale approach combining the solution at the pore level by the immersed boundary method and the macro‐scale solution with simulated permeability is used to solve actual experimental configurations. The computed pressure drop as a function of the flow rate on the macro scale configuration replicating two experimental setups is compared with the experimental data for various foam thicknesses. Copyright © 2011 National Research Council Canada  相似文献   

16.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A methodology to perform a ghost-cell-based immersed boundary method (GCIBM) is presented for simulating compressible turbulent flows around complex geometries. In this method, the boundary condition on the immersed boundary is enforced through the use of ‘ghost cells’ that are located inside the solid body. The computations of variables on these ghost cells are achieved using linear interpolation schemes. The validity and applicability of the proposed method is verified using a three-dimensional (3D) flow over a circular cylinder, and a large-eddy simulation of fully developed 3D turbulent flow in a channel with a wavy surface. The results agree well with the previous numerical and experimental results, given that the grid resolution is reasonably fine. To demonstrate the capability of the method for higher Mach numbers, supersonic turbulent flow over a circular cylinder is presented. While more work still needs to be done to demonstrate higher robustness and accuracy, the present work provides interesting insights using the GCIBM for the compressible flows.  相似文献   

18.
In the present study, residual‐based variational multiscale methods are developed for and applied to variable‐density flow at low Mach number. In particular, two different formulations are considered in this study: a standard stabilized formulation featuring SUPG/PSG/grad‐div terms and a complete residual‐based variational multiscale formulation additionally containing cross‐ and Reynolds‐stress terms as well as subgrid‐scale velocity terms in the energy‐conservation equation. The proposed methods are tested for various laminar flow test cases as well as a test case at laminar via transitional to turbulent flow stages. Stable and accurate results are obtained for all numerical examples. Substantial differences in the results between the two approaches do not become notable until a high temperature gradient is applied and the flow reaches a turbulent flow stage. The more pronounced influence of adding subgrid‐scale velocity terms to the energy‐conservation equation on the results than adding analogous terms to the momentum‐conservation equation in this situation appears particularly noteworthy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
We present a finite element residual‐based variational multiscale formulation applied to the numerical simulation of particle‐laden flows. We employ a Eulerian–Eulerian framework to describe the flows in which the mathematical model results from the incompressible Navier–Stokes equation combined with an advection–diffusion transport equation. Special boundary conditions at the bottom are introduced to take into account sediments deposition. Computational experiments are organized in two examples. The first example deals with the well‐known gravity current benchmark, the lock‐exchange configuration. The second also employs for the current initiation the lock configuration, but the sediment particles are endowed with a deposition velocity and are allowed to leave the domain in the moment they reach the bottom. This is intended to mimic, partially, as the bed morphology is not allowed to change, the deposition process, in which sediment deposits are no longer carried by the flow. The spatial pattern of the deposition and its correlation with flow structures are the main focus of this analysis. Numerical experiments have shown that the present formulation captures most of the relevant turbulent flow features with reasonable accuracy, when compared with highly resolved numerical simulations and experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A detailed numerical study using large‐eddy simulation (LES) and unsteady Reynolds‐averaged Navier–Stokes (URANS) was undertaken to investigate physical processes that are engendered in the injection of a circular synthetic (zero‐net mass flux) jet in a zero pressure gradient turbulent boundary layer. A complementary study was carried out and was verified by comparisons with the available experimental data that were obtained at corresponding conditions with the aim of achieving an improved understanding of fluid dynamics of the studied processes. The computations were conducted by OpenFOAM C++, and the physical realism of the incoming turbulent boundary layer was secured by employing random field generation algorithm. The cavity was computed with a sinusoidal transpiration boundary condition on its floor. The results from URANS computation and LES were compared and described qualitatively and quantitatively. There is a particular interest for acquiring the turbulent structures from the present numerical data. The numerical methods can capture vortical structures including a hairpin (primary) vortex and secondary structures. However, the present computations confirmed that URANS and LES are capable of predicting current flow field with a more detailed structure presented by LES data as expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号