首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel monolithic stationary phase with mixed mode of hydrophilic and strong anion exchange (SAX) interactions based on in situ copolymerization of pentaerythritol triacrylate (PETA), N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (DMMSA) and a selected quaternary amine acrylic monomer was designed as a multifunctional separation column for CEC. Although the zwitterionic functionalities of DMMSA and hydroxy groups of PETA on the surface of the monolithic stationary phase functioned as the hydrophilic interaction (HI) sites, the quaternary amine acrylic monomer was introduced to control the magnitude of the EOF and provide the SAX sites at the same time. Three different quaternary amine acrylic monomers were tested to achieve maximum EOF velocity and highest plate count. The fabrication of the zwitterionic monolith (designated as HI and SAX stationary phase) was carried out when [2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate was used as the quaternary amine acrylic monomer. The separation mechanism of the monolithic column was discussed in detail. For charged analytes, a mixed mode of HI and SAX was observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(PETA‐co‐DMMSA‐co‐[2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate) monolithic column. The optimized monolith showed good separation performance for a range of polar analytes including nucleotides, nucleic acid bases and nucleosides, phenols, estrogens and small peptides. The column efficiencies greater than 192 000 theoretical plates/m for estriol and 135 000 theoretical plates/m for charged cytidine were obtained.  相似文献   

2.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

3.
A novel polymethacrylate‐based monolithic column with covalently bonded zwitterionic functional groups was prepared by in situ copolymerization of N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (SPE), pentaerythritol triacrylate (PETA), and vinylsulfonic acid (VS) in a binary porogenic solvent consisting of cyclohexanol and ethylene glycol. This monolith was developed as a separation column for CEC. While SPE functioned as both an electrostatic interaction stationary phase and the polar ligand provider, VS was employed to generate EOF. PETA, which has much more hydrophilicity due to a hydroxyl sub‐layer, was used to replace ethylene dimethacrylate as a cross‐linker. The monolith provided an adequate EOF when VS level was maintained at 0.6% w/w. Different monolithic stationary phases were easily prepared by adjusting the ratio of PETA/SPE in the polymerization solution as well as the composition of the porogenic solvent. The observed RSD were ≤3.6, ≤4.3 and ≤5.6% for the EOF velocity, retention time, and column efficiency, respectively. The column efficiencies greater than 145 000 theoretical plates/m for thiourea and 132 000 theoretical plates/m for charged cytidine were obtained. The poly(SPE‐co‐PETA‐co‐VS) monolith showed good selectivity for neutral and charged polar analytes. It was found that the separation mechanism of charged polar solutes was attributed to a mixed mode of hydrophilic interaction and electrostatic interaction, as well as electrophoresis. No peak tailing was observed for the separation of basic compounds, such as basic nucleic acid bases and nucleoside on the monolith.  相似文献   

4.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

5.
A porous zwitterionic monolith was prepared by in situ covalent attachment of lysine to a γ‐glycidoxypropyltrimethosysilane‐modified silica monolith. The prepared column was used to perform neutral and ionized solutes separations by pressurized (pCEC). Due to the zwitterionic nature of the resulting stationary phase, the monolithic column provided both electrostatic attraction and repulsion sites for electrochromatographic retention for ionized solutes. Separation of several nucleotides was investigated on the monolithic column. It was shown that the nucleotides could be separated based on hydrophilic and electrostatic interactions between the stationary phase and analyte. Besides, the separation property of the zwitterionic silica monolith was compared with the use of diamine‐bonded silica monolith as stationary phase. As expected, the lysine monolith exhibited a lower retention for the five nucleotides, which was due to the dissociation of the external carboxylic acid groups, leading to electrostatic repulsion with negatively charged solutes. Under the same experimental conditions, separation of the five nucleotides on the zwitterionic column was in less than 8 min, while that on the diamine column was in approximately 60 min.  相似文献   

6.
A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).  相似文献   

7.
A polymer monolith microextraction method coupled with high‐performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused‐silica capillaries using thermal initiation free‐radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross‐linker, cyclohexanol, and 1‐dodecanol as the porogen. N‐Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate‐coN‐methylolacrylamide‐co‐ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier‐transform infrared spectra, and X‐ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high‐performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9?104.7% when applied to the determination of the adenosines in five royal jelly samples.  相似文献   

8.
A silica‐particle‐supported zwitterionic polymeric monolithic column, shortened as supported column (S‐column), was prepared by the in situ polymerization of methacrylic acid, ethylene dimethacrylate, and 2‐(dimethylamino)ethyl methacrylate in the presence of a ternary porogenic solvent containing water, methanol, and cyclohexanol in a 250 μm id fused‐silica capillary prepacked with 5 μm bare silica particles. In the S‐column, a thin layer of the polymers was formed around the silica particles in the form of nanoglobules, leaving the interstitial spaces between the particles free for liquid flow. The effects of the preparation conditions on the morphology of the monolith were investigated by scanning electron microscopy and backpressure measurements. The selected volumetric ratio of porogens, monomer concentration, polymerization time, and temperature are 1:1:8 (water/methanol/cyclohexanol), 25% v/v, 5 h, and 60°C, respectively. The S‐column was evaluated by comparison with its conventional organic counterpart in terms of morphology, mechanical stability, permeability, swelling–shrinking behavior, capacity, and efficiency. The results demonstrate that the S‐column is superior to its counterpart in all the terms with the exception of permeability. The above merits and zwitterionic property of the S‐column were further confirmed by separate separations of four inorganic anions and three organic cations.  相似文献   

9.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

10.
A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide and N,N’‐methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused‐silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide coating. In addition, the poly[2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run‐to‐run (n = 5), day‐to‐day (n = 3), and column‐to‐column (n = 3) of toluene, N,N‐dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.  相似文献   

11.
A novel o‐phenanthroline‐immobilized ionic‐liquid‐modified hybrid monolith for capillary electrochromatography was synthesized based on chloropropyl‐silica, which was prepared by the in situ polymerization of tetramethoxysilane and 3‐chloropropyltrimethoxysilane via a sol–gel process. The morphology of the hybrid monolith was characterized by scanning electron microscopy, and relatively stable anodic electroosmotic flow was observed under a broad pH ranged from pH 3.0 to 9.0. The separation mechanism was investigated by separating four neutral molecules (toluene, dimethylformamide, formamide, and thiourea). The obtained hybrid monolith possessed an obviously reversed‐phase retention mechanism, but when the acetonitrile content in the mobile phase was >90% v/v, a weak hydrophilic mechanism was observed on the resultant o‐phenanthroline‐modified chloropropyl‐silica hybrid monolith. The reproducibility of the column was also investigated by measuring relative standard deviations of the migration time for four neutral molecules. Relative standard deviations of run to run (n = 3), day to day (n = 3), and column to column (n = 3) were in the range of 0.4–0.7, 0.9–2.1, and 1.4–3.3%, respectively. Basic separations of various polar analytes including phenols and aromatic amines were successfully achieved.  相似文献   

12.
We synthesized new polynorbornene dicarboximide (PCaNI) functionalized with hole‐transporting carbazole moieties and its copolymer (PCaNA) by ring‐opening metathesis polymerization (ROMP), where the PCaNA was further reacted with 3‐amino‐triethoxysilane to prepare PCaNI/silica hybrid. We also investigated the feasibility of PCaNI and PCaNI/silica hybrid (PCaSi) as a hole‐transporting material for hybrid organic light emitting devices (HOLEDs). To improve the performance of the PCaNI‐based HOLEDs, N,N′‐diphenyl‐N,N′‐(3‐methylphenyl)‐[1,1′‐biphenyl]‐4‐4′‐diamine (TPD) was also introduced into the PCaNI matrix. Results showed that PCaNI exhibited high glass transition temperature (~260 °C) and high optical transparency in the visible region. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PCaNI were measured as 5.6 and 2.2 eV, while the TPD‐doped PCaNI showed 5.7 eV (HOMO) and 2.6 eV (LUMO). The PCaNI/silica hybrid nanolayers showed excellent solvent resistance due to the formation of covalent bonds between ITO and PCaNI. The HOLEDs with PCaNI/TPD or PCaSi/TPD hybrid nanolayers exhibited relatively higher luminance (~10,000 cd/m2), lower operating voltage (~6.5 V at 300 cd/m2), and higher current efficiency (~2.7 cd/A). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A novel monolithic stationary phase based on in situ copolymerization of zwitterionic monomer N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine (DMMSA), pentaerythritol triacrylate (PETA), either methacrylatoethyl trimethyl ammonium chloride (META) or sodium 2-methylpropene-1-sulfonate (MPS) was designed as a multifunctional separation column for hydrophilic interaction capillary electrochromatography (HI-CEC). A significantly enhanced hydrophilicity was obtained on the poly(DMMSA-co-PETA-co-META or MPS) monolith, which was contributed by the high percentage of DMMSA in the polymerization mixture. A column efficiency of 200,000 plates/m was obtained and the monolithic column also displayed a satisfactory repeatability in terms of migration time with RSD values less than 1.1% (intra-day, n = 5) and 2.0% (inter-day, n = 3). Most importantly, the column was successfully applied to separation of a pool of neurotransmitters which are not well separated on commercial HILIC packing materials. A baseline separation of the 12 model components was obtained with good selectivity, symmetrical peak shape and high column efficiency with BGE consisting of 20 mM ammonium formate (pH 3.0) in ACN/H2O (80/20, v/v).  相似文献   

14.
The synthesis and chromatographic behavior of an analytical size mixed‐mode bonded silica monolith was investigated. The monolith was functionalized by an in situ modification process of a bare silica rod with chloro(3‐cyanopropyl)dimethyl silane and chlorodimethyl propyl phenyl silane solutions. These ligands were selected in order to combine both resonance and nonresonance π‐type bonding within a single separation environment. Selectivity studies were undertaken using n‐alkyl benzenes and polycyclic aromatic hydrocarbons in aqueous methanol and acetonitrile mobile phases to assess the methylene and aromatic selectivities of the column. The results fit with the linear solvent strength theory suggesting excellent selectivity of the column was achieved. Comparison studies were performed on monolithic columns that were functionalized separately with cyano and phenyl ligands, suggesting highly conjugated molecules were able to successfully exploit both of the π‐type selectivities afforded by the two different ligands on the mixed‐mode column.  相似文献   

15.
《Electrophoresis》2018,39(7):924-932
In this work, an organic‐inorganic hybrid boronate affinity monolithic column was prepared via “one‐pot” process using 4‐vinylphenylboronic acid as organic monomer and divinylbenzene as cross‐linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis‐diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed‐interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run‐to‐run, day‐to‐day and batch‐to‐batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.  相似文献   

16.
A simple “one‐pot” approach for the preparation of a new vinyl‐functionalized organic–inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica‐based monolith, while 1‐hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed‐phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation‐exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m.  相似文献   

17.
Jandera  Pavel  Sta&#;kov&#;  Magda 《Chromatographia》2015,78(13):853-859

Organic polymer monolithic columns of different lengths have been prepared in 320 µm i.d. fused silica capillary by in situ radical polymerization of N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine as a zwitterionic functional monomer and bisphenol A glycerolate dimethacrylate as a crosslinking monomer in the presence of porogenic solvents. The zwitterionic monolithic columns are intended for separations of polar compounds in hydrophilic interaction chromatography (HILIC). The effects of the capillary column length, from 115 to 175 mm, on separation efficiency, were investigated under HILIC conditions, using 95:5 acetonitrile in water as the mobile phase. The extra-column contributions to band broadening significantly decrease the efficiency (apparent height equivalent to a theoretical plate), especially for weakly retained samples, and increase with diminishing column length. The experimental height equivalents of theoretical plate, HETP, were corrected for the extra-column contributions, which were determined for a series of columns by extrapolation to zero column length. On a 175 mm long column, the column efficiency, HETP = 16.5 μm, measured at the optimum linear flow velocity of 0.5 mm s−1, improved to HETP = 5 µm, after correction for extra-column contributions. For more strongly retained small polar compounds, interactions with zwitterionic groups and (or) water adsorbed inside the pores decrease the column efficiency at higher flow rates.

  相似文献   

18.
We have developed and validated a high‐performance liquid chromatography method that uses monolithic silica disk‐packed spin columns and a monolithic silica column for the simultaneous determination of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, and NG,NG′‐dimethyl‐l ‐arginine in human plasma. For solid‐phase extraction, our method employs a centrifugal spin column packed with monolithic silica bonded to propyl benzenesulfonic acid as a cation exchanger. After pretreatment, the methylated arginines are converted to fluorescent derivatives with 4‐fluoro‐7‐nitro‐2,1,3‐benzoxadiazole, and then the derivatives are separated on a monolithic silica column. l ‐Arginine concentration was also determined in diluted samples. Standard calibration curves revealed that the assay was linear in the concentration range 0.2–1.0 μM for methylated arginines and 40–200 μM for l ‐arginine. Linear regression of the calibration curve yielded equations with correlation coefficients of 0.999 (r2). The sensitivity was satisfactory, with a limit of detection ranging from 3.75 to 9.0 fmol for all four compounds. The RSDs were 4.3–4.8% (intraday) and 3.0–6.8% (interday). When this method was applied to samples from six healthy donors, the detected concentrations of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, NG,NG′‐dimethyl‐l ‐arginine and l ‐arginine were 0.05 ± 0.01, 0.41 ± 0.07, 0.59 ± 0.11, and 83.8 ± 30.43 μM (n = 6), respectively.  相似文献   

19.
The optimization of a porous structure to ensure good separation performances is always a significant issue in high‐performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high‐performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high‐performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high‐performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36 000 m?1. Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans‐stilbene with separation factor as 7 and theoretical plate number as 76 000 m?1 for cis‐stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long‐ established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.  相似文献   

20.
A stationary phase was prepared by chemical derivatization of the support particles with a layer of copolymer composed of styrene and N‐phenyl acrylamide. Silica monolith particles of ca. 2.6 µm (volume‐based average) have been prepared as the support particles by sol‐gel reaction followed by differential sedimentation. The particles were reacted with 3‐chloropropyl trimethoxysilane followed by sodium diethyldithiocarbamate to introduce an initiator moiety. Then, the copolymer layer was immobilized via reversible addition‐fragmentation transfer polymerization. The resultant phase was packed in glass‐lined stainless‐steel micro‐columns (1 x 150 mm) and evaluated for the separation of a mixture composed of five peptides (Trp‐Gly, Thr‐Tyr‐Ser, angiotensin I, isotocin and bradykinin). The effect of monomer mixing ratio (styrene versus N‐phenyl acrylamide) on the chromatographic separation efficiency of the stationary phase was examined. A number of theoretical plates (N) as high as 33 600 plates/column (224 000 plates/m, 4.46 µm plate height) was achieved using the column packed with the optimized stationary phase. The column‐to‐column reproducibility based on three columns packed with three different batches of stationary phase was found satisfactory in separation efficiency, retention factor, and asymmetry factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号