首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The low‐concentration phenazine‐1‐carboxylic acid (PCA) (=0.3 mM) extracted from fermentation broth of Pseudomonas sp. M18 was selected to be purified with a newly facile free flow electrophoresis (FFE) device with gratis gravity. Three factors of pH value and concentration of background buffer, and the cooling circle of FFE device were investigated for the purification of PCA in the FFE device. It was found that the pH value and concentration of background buffer had mild influences on the separation of PCA whether with cooling circle or not. However, the cooling circle had a much greater impact on the separation of PCA. The controlling of the band zone of PCA in FFE chamber would be difficult if without cooling circle, while the controlling would become easy if with cooling circle. Under the optimal conditions (10 mM pH 5.5 phosphate as background buffer, 30 mM pH 5.5 phosphate buffer as electrode solution, 5.46 mL/min background flux, 10 min residence time of injected sample, and 500 V), PCA could be continuously prepared from its impurities with relative high purity. The flux of sample injection was 115 μL/min, viz. 7 mL sample throughput per hour, and the recovery was up to 85%. All of the experiments indicated that the FFE technique was a good alternative tool for the study on natural biological control agents.  相似文献   

2.
We have developed new catechol‐based sensors that can detect fluoride via fluorescence or optical absorption even in the presence of other halides. The level and sensitivity of detection of the sensing molecules is dependent on the chromophore length, which is controlled by the number of thiophene units (one to three) within the chromophore. The sensor with three thiophene units, (E)‐2‐(2,2′‐terthiophen‐5‐yl)‐3‐(3,4‐dihydroxyphenyl)acrylonitrile, gives the best response to fluoride. By using fluorescence measurements fluoride is detectable over the concentration range 1.7 μM to 200 μM . Importantly, when adsorbed onto a solid support the fluorescent catechol dye can be used to detect the presence of fluoride in aqueous solution.  相似文献   

3.
Micro free flow electrophoresis (µFFE) is a valuable technique capable of high throughput rapid microscale electrophoretic separation along with mild operating conditions. However, the stream flow separation nature of free flow electrophoresis affects its separation performance with additional stream broadening due to sample stream deflection. To reduce stream broadening and enhance separation performance of µFFE, we presented a simple microfluidic device that enables injection bandwidth control. A pinched injection was formed in the reported µFFE system using operating buffer at sample flow rate ratio (r) setting. Initial bandwidth at the entrance of separation chamber can be shrunk from 800 to 30 µm when r increased from 1 to 256. Stream broadening at the exit of separation chamber can be reduced by about 96% when r increased from 4 to 128, according to both theoretical and experimental results. Moreover, the separation resolution for a dye mixture was enhanced by a factor of 4 when r increased from 16 to 128, which corresponded to an 80% reduction in sample initial bandwidth. Furthermore, a similar enhancement on amino acids separation was obtained by using injection control in the reported µFFE device and readily integrated into online/offline sample preparation and/or downstream analysis procedures.  相似文献   

4.
Poly(styrene‐co‐vinylbenzophenone) prepared by a graft reaction on polystyrene revealed photoactive properties under irradiation of UVA. The photoactive structural features of the polymer were examined via electron paramagnetic resonance (EPR) under irradiation of UVA and fluorescent light. The photoactive functions of the polymer such as antimicrobial performance and dye decolorization ability were investigated. The results revealed that the poly(styrene‐co‐vinylbenzophenone) could generate radicals under fluorescent and UVA irradiation, and some radicals could stay alive for about 30 min in a dark chamber. The photoexcited polymer showed excellent antibacterial ability and decolorization effect on methylene blue and methyl orange dye under both daylight and UVA light. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2423–2430, 2008  相似文献   

5.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

6.
《Electroanalysis》2004,16(4):289-297
The polymer film of N,N‐dimethylaniline (DMA) is deposited on the electrochemically pretreated glassy carbon (GC) electrode by continuous electrooxidation of the monomer. This poly N,N‐dimethylaniline (PDMA) film‐coated electrode can be used as an amperometric sensor of ascorbic acid (AA). The polymer film (thickness (?): 0.3±0.02 μm) having positive charge in its backbone attracts the anionic species AA. Thus, the anodic peak potential (350 mV vs. Ag|AgCl|NaCl(sat)) for the oxidation of AA at the bare electrode is largely shifted to the negative value (150 mV) at this electrode. The PDMA film‐coated electrode is stable in acidic, alkaline and neutral media and can sense AA at different pH's. The diffusion coefficients of AA in solution (D) and in film (Ds) were estimated by rotating disk electrode voltammetry: D=(5.5±0.1)×10?6 cm2 s?1 and Ds=(6.3±0.2)×10?8, (6.0±0.2)×10?8 and (4.7±0.2)×10?8 cm2 s?1 for 0.5, 1.5 and 3.0 mM AA, respectively. A permeability of AA through the PDMA film was found to decrease with increasing the concentration of AA in the solution. In the chronoamperometry, the current response for the oxidation of AA at different times elapsed after potential‐step application is linearly increased with the increase in AA concentration in a wide range of its concentration from 25 μM to 1.65 mM. In the hydrodynamic amperometry, a successive addition of 10 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.178 μA cm?2 μM?1. So, the fouling of the electrode surface caused by the oxidized product of AA is markedly eliminated at this PDMA film‐coated electrode. A flow injection analysis based on the present electrode was performed to estimate the concentration of vitamin C in fruit juice.  相似文献   

7.
β‐Cyclodextrin functionalized graphene/Ag nanocomposite (β‐CD/GN/Ag) was prepared via a one‐step microwave treatment of a mixture of graphene oxide and AgNO3. β‐CD/GN/Ag was employed as an enhanced element for the sensitive determination of 4‐nitrophenol. A wide linear response to 4‐nitrophenol in the concentration ranges of 1.0×10?8–1.0×10?7 mol/L, and 1.0×10?7–1.5×10?3 mol/L was achieved, with a low detection limit of 8.9×10?10 mol/L (S/N=3). The mechanism and the heterogeneous electron transfer kinetics of the 4‐nitrophenol reduction were discussed according to the rotating disk electrode experiments. Furthermore, the sensing platform has been applied to the determination of 4‐nitrophenol in real samples.  相似文献   

8.
Poly(hydroxyethylmethacrylate)‐based hydrogel membranes were applied to microfabricated, microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) and studied by cyclic voltammetry (CV) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). The membrane produced an order of magnitude decrease in current densities and a shift to quasi reversibility due to a decrease in the Dappt of FcCO2H, from 4.51×10?6 cm2 s?1 to 1.42×10?8 cm2 s?1, (2.18×10?8 cm2 s?1 from release experiments). The MDEA050 (comprising 50 μm disks) maintained its enhanced current density attributes confirming its value as an effective electrode for biosensors. Finite element modeling (FEM) simulations successfully replicated the voltammograms of the MDEAs.  相似文献   

9.
An ultrasensitive electrochemiluminescence (ECL) method on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed for improving ECL analytical characteristics using vanadate(V) as a representative. Vanadate(V) could be electrochemically reduced to generate vanadate(II) which could be chemically oxidized by potassium periodate to regenerate vanadate(V) and give parallel catalytic wave effect. Then, the reduced product of potassium periodate could react with butyl‐rhodamine B to emit a sensitive chemiluminescence signal. The chemiluminescence intensity was correlative with vanadate(V) concentration. The investigation on the electrochemical reaction rate constant (k0) confirmed that the speed of electrochemical reaction was faster than that of the subsequent chemiluminescence reaction. The possibility of the combination of electrochemical parallel catalytic reaction with chemiluminescence signal sensing was proved. The similar ECL behaviors could be observed at zirconia nanowires‐Nafion modified electrode. Because of the separation and enrichment effect of the modified electrode on vanadate(V), the selectivity and sensitivity was further improved greatly. Based on these findings, a new concept on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed and an ultrasensitive ECL method for the determination of vanadate(V) was developed at zirconia nanowires‐Nafion modified electrode. Under the optimum experimental conditions, the ECL intensity was linear with the concentration of vanadate(V) in the range of 2.0×10?12 mol/L–2.0×10?10 mol/L. The detection limit was 8.0×10?13 mol/L, which was more than 6 orders of magnitude lower than that observed by electrochemical current transduction for electrochemical parallel catalytic reaction at zirconia nanowires‐Nafion modified electrode.  相似文献   

10.
A large-scale free-flow electrophoresis (LS-FFE) is often too large for cell separation of lab scale, whereas micro-FFE (μFFE) has great difficulty in cell isolation due to easy blockage by cell accumulation in μFFE. In this study, a mid-scale FFE (MS-FFE) is developed for cell and protein separations. The volume of the separation chamber (70×40×0.1-0.8 mm) is from 280 μL to 2.24 mL, much lower than that in an LS-FFE but higher than that in a μFFE. Gravity is used for uniform flow of the background buffer only via a single pump with 16 channels and the sample is injected via an adjuster originally used for clinical intravenous injection. The experiments reveal that the hydrodynamic and electrohydrodynamic flows are much stable, and the Joule heat can be effectively dispersed without obvious positive or negative deviation as shown by the omega plots. By the device, Escherichia coli and Staphylococcus aureus, which easily accumulate to block μFFE and are separated with difficulty due to their same negative charges carried, can be well isolated under the conditions of 4.5 mM pH 8.5 Tris-boric buffer (4.5 mM Tris, 4.5 mM boric acid) with 0.10 mM ethylene diamine tetraacetic acid and 5% m/v sucrose, 200 μL/min, 800 V, and sample injection via inlet 4. The mid-scale FFE device could also be used for the separation of three model proteins of horse heart cytochrome c, myoglobin and bovine serum albumin. The device has clear significance for mid-scale separation of cells and proteins.  相似文献   

11.
Geng JZ  Shao J  Yang JH  Pang B  Cao CX  Fan LY 《Electrophoresis》2011,32(22):3248-3256
An increasing number of small biosamples (e.g. proteins and enzymes) need micropreparation in lab. However, neither large-scale free-flow electrophoresis (LS-FFE) nor chip FFE (C-FFE) could fit the growing demands. Herein, a simple quasi-chip FFE (QC-FFE) was constructed. In contrast to C-FFE, the features of QC-FFE are as follows: (i) its separation chamber is reassemblable and rewashable avoiding discard of C-FFE due to blockage of solute precipitation in chamber; (ii) its chamber size is 45 mm × 30 mm × (80-500) μm (108-654 μL volume) having function of micropreparation; (iii) there are up to 16 outlets in QC-FFE bestowing fine fraction for micropurification. The QC-FFE was used for the micropurification of model enzyme of self-digestible trypsin in crude pancreatin. Under the given conditions, the purification factor of enzyme was 11.7, the specific activity reached 6236 U/mg, the run time for 19 μL sample purification was 45 s and the throughput of trypsin was 3.34 mg/h, and the yield of pure trypsin was 55.2%. All of the results show the feasibility of enzyme micropreparation via QC-FFE. The developed device and procedure have potential use to other micropurification of protein or peptide sample.  相似文献   

12.
A biomimetic potentiometric field monitoring device was developed for the trace determination of phorate (O,O‐diethyl S‐ethyl thiomethyl phophorodithioate) in natural waters. The sensing element was fabricated by the inclusion of phorate imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The sensor surface can be reused without conditioning unlike most other conventional sensors. Operational parameters such as amount and nature of plasticizers sensing material, pH and response time were optimized. The response characteristics of the non‐imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors for phorate were compared under optimum conditions. The IPIM sensor responds linearly to phorate in the concentration in the ranges 1×10?9 to 1×10?6 M and 1×10?6 to 1×10?5 M of different slopes with a detection limit of 1×10?9 M. The selectivity was tested with various common organophosphorous (OP) pesticides and herbicides. In addition to superior sensitivity and selectivity of IPIM over NIPIM‐based sensor, IPIM‐based phorate sensor was found to be stable for 3 months and can be used for more than 40 times without any loss in sensitivity. The applicability for analyzing ground, river and tap‐water samples was successfully demonstrated via recovery studies.  相似文献   

13.
An electrolyte based on the tris(acetylacetonato)iron(III)/(II) redox couple ([Fe(acac)3]0/1?) was developed for p‐type dye‐sensitized solar cells (DSSCs). Introduction of a NiO blocking layer on the working electrode and the use of chenodeoxycholic acid in the electrolyte enhanced device performance by improving the photocurrent. Devices containing [Fe(acac)3]0/1? and a perylene–thiophene–triphenylamine sensitizer (PMI–6T–TPA) have the highest reported short‐circuit current (JSC=7.65 mA cm?2), and energy conversion efficiency (2.51 %) for p‐type DSSCs coupled with a fill factor of 0.51 and an open‐circuit voltage VOC=645 mV. Measurement of the kinetics of dye regeneration by the redox mediator revealed that the process is diffusion limited as the dye‐regeneration rate constant (1.7×108 M ?1 s?1) is very close to the maximum theoretical rate constant of 3.3×108 M ?1 s?1. Consequently, a very high dye‐regeneration yield (>99 %) could be calculated for these devices.  相似文献   

14.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

15.
The article describes the use of a fullerene (C60)‐β‐cyclodextrin conjugate, synthesized via 1,3dipolar cycloaddition, for the ultrasensitive electrochemical detection of p‐nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p‐nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p‐nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10?9 mol L?1 to 4.2×10?7 mol L?1 and the detection limit was calculated to be 1.2×10?9 mol L?1.  相似文献   

16.
A lead film plated in situ at a carbon paste support was tested as a novel, potential electrode for adsorptive stripping voltammetric determination of cobalt traces in an ammonia buffer solution. To show the practical applicability of the new electrode, a catalytic adsorptive Co system in a supporting electrolyte containing 0.1 M ammonia buffer, 5×10?4 M nioxime and 0.25 M nitrite was selected and investigated as a model solution. Pb and Co ions were simultaneously accumulated in situ on the electrode surface: Pb ions electrochemically at ?1.3 V) and then at ?0.75 V, at which potential the Co(II)‐nioximate complex was also pre‐concentrated via adsorption. Instrumental parameters, such as the time of nucleation and formation of Pb film deposits, the time of accumulation of the Co‐nioxime complex at the PbF/CPE, and the procedures of electrode regeneration, were optimized to obtain good reproducibility and sensitivity of the Co response. The optimized procedure yields favorable and highly stable stripping responses with good precision (RSD=3% for a 5×10?8 M Co) and good linearity (up to 5×10?7 M, coefficient of determination, R=0.996). The detection limit was 4×10?10 M Co (0.023 μg L?1) for an accumulation time of 120 s. The method enables the determination of Co in the presence of high excesses of Ni or Zn. The voltammetric data were correlated with the structural characterization by scanning electron microscopy (SEM) and X‐ray fluorescence spectroscopy (XRF).  相似文献   

17.
Single‐walled carbon nanotubes(SWCNTs) were dispersed into DMSO, and a SWCNTs‐film coated glassy carbon electrode was achieved via evaporating the solvent. The results indicated that CNT modified glassy carbon electrode exhibited efficiently electrocatalytic reduction for ranitidine and metronidazole with relatively high sensitivity, stability and life time. Under conditions of cyclic voltammetry, the potential for reduction of selected analytes is lowered by approximately 150 mV and current is enhanced significantly (7 times) in comparison to the bare glassy carbon electrode. The electrocatalytic behavior is further exploited as a sensitive detection scheme for these analytes determinations by hydrodynamic amperometry. Under optimized condition in amperometric method the concentration calibration range, detection limit and sensitivity were about, 0.1–200 μM, detection limit (S/N=3) 6.3×10?8 mol L?1 and sensitivity 40 nA/μM for metronidazole and 0.3–270 μM 7.73×10?8 mol L?1 and 25 nA/μM for ranitidine. In addition, the ability of the modified electrode for simultaneous determination of ranitidine and metronidazole was evaluated. The proposed method was successfully applied to ranitidine and metronidazole determination in tablets. The analytical performance of this sensor has been evaluated for detection of these analytes in serum as a real sample.  相似文献   

18.
《Electroanalysis》2018,30(2):250-258
An electrochemical DNA biosensor for DNA determination of genetically modified (GM) soybean (CaMV 35S target genes) was developed utilizing a new detection concept based on the adsoption of anthraquinone‐2‐sulphonic acid (AQMS) on the reduced graphene oxide nano‐particles (rGO) during DNA hybridization events. The aminated DNA probe for CaMV 35S was immobilized onto poly(n‐butyl acrylate) film modified with succinimide functional groups [poly(nBA‐NAS)] via peptide covalent bond. Nanosheets of rGO were entrapped in the poly(nBA‐NAS) film to form a conducting [poly(nBA‐NAS)‐rGO] film of the DNA biosensor. Besides facilitating the electron transfer reactions, the rGO also functioned as an adsorbent for AQMS. The sensing mechanism of the proposed DNA biosensor involved measuring the oxidation current of the AQMS adsorbed on the electrode surface at −0.50 V using differential pulse voltammetry (DPV) before and after a DNA hybridization event. Under optimum conditions, the DNA biosensor demonstrated a linear proportionality between AQMS oxidation signal and logarithm cDNA concentration from 1.0×10−15 M to 1.0×10−8 M target DNA with a detection limit of 6.3×10−16 M. The electrochemical DNA biosensor possessed good selectivity and a shelf life of about 40 days with relative standard deviation of reproducibility obtained in the range of 3.7–4.6% (n=5). Evaluation of the DNA biosensor using GM soybean DNA extracts showed excellent recovery percentages of 97.2–104.0.  相似文献   

19.
Mesoporous silica thin films encapsulating a molecular iron‐triazole complex, Fe(Htrz)3 (Htrz=1,2,4,‐1H‐triazole), have been generated by electrochemically assisted self‐assembly (EASA) on indium‐tin oxide (ITO) electrode. The obtained modified electrodes are characterized by well‐defined voltammetric signals corresponding to the FeII/III centers of the Fe(Htrz)3 species immobilized into the films, indicating fast electron transfer processes and stable operational stability. This is due to the presence of a high density of redox probes in the material (1.6×10?4 mol g?1 Fe(Htrz)3 in the mesoporous silica film) enabling efficient charge transport by electron hopping. The mesoporous films are uniformly deposited over the whole electrode surface and they are characterized by a thickness of 110 nm and a wormlike mesostructure directed by the template role played by Fe(Htrz)3 species in the EASA process. These species are durably immobilized in the material (they are not removed by solvent extraction). The composite mesoporous material (denoted Fe(Htrz)3@SiO2) is then used for the electrocatalytic detection of hydrogen peroxide, which can be performed by amperometry at an applied potential of ?0.4 V versus Ag/AgCl and by flow injection analysis. The organic‐inorganic hybrid film electrode displays good sensitivity for H2O2 sensing over a dynamic range from 5 to 300 μM, with a detection limit estimated at 2 μM.  相似文献   

20.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号