首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The full configuration interaction quantum Monte Carlo (FCIQMC) method, as well as its "initiator" extension (i-FCIQMC), is used to tackle the complex electronic structure of the carbon dimer across the entire dissociation reaction coordinate, as a prototypical example of a strongly correlated molecular system. Various basis sets of increasing size up to the large cc-pVQZ are used, spanning a fully accessible N-electron basis of over 10(12) Slater determinants, and the accuracy of the method is demonstrated in each basis set. Convergence to the FCI limit is achieved in the largest basis with only O[10(7)] walkers within random errorbars of a few tenths of a millihartree across the binding curve, and extensive comparisons to FCI, CCSD(T), MRCI, and CEEIS results are made where possible. A detailed exposition of the convergence properties of the FCIQMC methods is provided, considering convergence with elapsed imaginary time, number of walkers and size of the basis. Various symmetries which can be incorporated into the stochastic dynamic, beyond the standard abelian point group symmetry and spin polarisation are also described. These can have significant benefit to the computational effort of the calculations, as well as the ability to converge to various excited states. The results presented demonstrate a new benchmark accuracy in basis-set energies for systems of this size, significantly improving on previous state of the art estimates.  相似文献   

2.
The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of the 19 calculated excited singlets are doubly excited states. Most of the states have large multiconfigurational character. These results provide benchmark values for electronic correlation multireference methods. (4ex6MO)CAS-SDCI values for the same energies and properties are also reported.  相似文献   

3.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

4.
The formation and physicochemical properties of polymer electrolytes strongly depend on the lattice energy of metal salts. An indirect but efficient way to estimate the lattice energy through the relationship between the heterolytic bond dissociation and lattice energies is proposed in this work. The heterolytic bond dissociation energies for alkali metal compounds were calculated theoretically using the Density Functional Theory (DFT) of B3LYP level with 6‐311+G(d,p) and 6‐311+G(2df,p) basis sets. For transition metal compounds, the same method was employed except for using the effective core potential (ECP) of LANL2DZ and SDD on transition metals for 6‐311+G(d,p) and 6‐311+G(2df,p) calculations, respectively. The dissociation energies calculated by 6‐311+G(2df,p) basis set combined with SDD basis set were better correlated with the experimental values with average error of ca. ±1.0% than those by 6‐311+G* combined with the LANL2DZ basis set. The relationship between dissociation and lattice energies was found to be fairly linear (r>0.98). Thus, this method can be used to estimate the lattice energy of an unknown ionic compound with reasonably high accuracy. We also found that the dissociation energies of transition metal salts were relatively larger than those of alkaline metal salts for comparable ionic radii. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 827–834, 2001  相似文献   

5.
Exploratory variational pseudopotential density functional calculations are performed for the electronic properties of many‐electron systems in the 3D cartesian coordinate grid (CCG). The atom‐centered localized gaussian basis set, electronic density, and the two‐body potentials are set up in the 3D cubic box. The classical Hartree potential is calculated accurately and efficiently through a Fourier convolution technique. As a first step, simple local density functionals of homogeneous electron gas are used for the exchange‐correlation potential, while Hay‐Wadt‐type effective core potentials are employed to eliminate the core electrons. No auxiliary basis set is invoked. Preliminary illustrative calculations on total energies, individual energy components, eigenvalues, potential energy curves, ionization energies, and atomization energies of a set of 12 molecules show excellent agreement with the corresponding reference values of atom‐centered grid as well as the grid‐free calculation. Results for three atoms are also given. Combination of CCG and the convolution procedure used for classical Coulomb potential can provide reasonably accurate and reliable results for many‐electron systems. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
The electron affinity of NO has been measured to be 0.026 eV by laser photodetachment experiments. This low electron affinity (just 2.5 kJ/mol or 210 cm-1) presents a computational challenge that requires careful attention to several aspects of the computational procedure required to predict the electron affinity of NO from first principles. We have used augmented correlation consistent basis sets with several coupled cluster methods to calculate the molecular energies, bond dissociation energies, bond lengths, vibrational frequencies, and potential energy curves for NO and NO-. The electron affinity of NO, EA0, using the CCSD(T) method and extrapolating to the complete basis set limit, is calculated to be 0.028 eV. The calculated bond dissociation energies, D0, for NO and NO- are 622 and 487 kJ/mol, respectively, compared with experimental values of 626.8 and 487.8 kJ/mol. From the calculated potential energy curves for NO and NO- the vibrational wavefunctions were determined. The calculated vibrational wavefunctions predict Franck-Condon factor ratios in good agreement with the values determined in the photodetachment experiment.  相似文献   

7.
Interactions in diatomic dimers involving closed-shell metals   总被引:1,自引:0,他引:1  
Interaction energies of dimers containing alkaline earth (Be, Mg, and Ca) metals have been investigated using symmetry-adapted perturbation theory (SAPT) and supermolecular (SM) methods. Also, to enable broader comparisons, some calculations have been performed on the Zn dimer and on the He-Mg dimer. Although all of the investigated metallic atoms have closed electronic shells, the quasidegeneracy of the ground states of these atoms with the lowest-lying excited states leads to convergence problems in theories based on a single-determinant reference state. The main goal of the present work was to establish how the quality of the interaction energies computed using various electronic-structure methods changes across the range of atoms. We show that although the convergence problems become somewhat less severe with the increase of the atomic number, single-determinant-based methods do not provide reliable interaction energies for any of the investigated metallic dimers even at the level of the coupled-cluster method with single, double, and noniterative triple excitations [CCSD(T)]. However, interaction energies accurate to within a few percent can be obtained if CCSD(T) calculations in large basis sets are extrapolated to the complete basis set limit and followed by full configuration interaction (FCI) calculations with a frozen-core (FC) approximation. Since the systems considered contain only two valence electrons, FCI/FC calculations have been feasible for all of them except for Zn2, providing the best theoretical estimates of the binding energies to date. We found that a large part of the error of the SAPT results originates from limiting some exchange components to terms proportional to the squares of the intermonomer orbital overlap integrals. When the neglected terms were approximately accounted for, the accuracy improved significantly and became comparable to that of CCSD(T), allowing us to obtain for the first time a physical interpretation of the interaction energies in metallic dimers.  相似文献   

8.
Two lowest-lying excited singlets with B(u) symmetry of all-trans-oligoenes, the well-known ionic 1(1)B(u)(+) state as well as the "hidden" ionic-covalent-mixed 1(1)B(u)(-) state, are calculated within both the Pariser-Parr-Pople (PPP) model at full configuration interaction (FCI) level and ab initio methods. The vertical excitation energies as well as wavefunctions from PPP-FCI calculations are found to be in good agreement with those from high-level multi-reference methods, such as multi-reference complete active space self-consistent field (CASSCF) with second order perturbative corrections (CASPT2), multi-reference M?ller-Plesset perturbation theory (MRMP), and complete active space valence bond theory (CASVB). The oscillator strengths from PPP calculation are in good agreement with spectroscopy experiments. The relatively small oscillator strength of 1(1)B(u)(-) is due to the approximate electron-hole symmetry of this state. In addition, the bond lengths in both states are found to show remarkable relativity with the bond orders calculated with ground state geometries, which suggests a possible strategy for initial guess in geometry optimization of excited states.  相似文献   

9.
Full CI calculations of first- and second-order properties are presented to provide benchmark results for comparisons with other methods, such as multireference CI(MRCI). The full CI(FCI) polarizability of F is computed using a double zeta plus polarization plus diffuse basis set. These FCI results are compared to those obtained at other levels of theory; the CASSCF/MRCI with Davidson correction results are in excellent agreement with the FCI. Differences between the polarizability results computed as a (numerical) second derivative of the energy or as an induced dipole moment are also discussed. FCI calculations are presented for the dipole moment and polarizability of HF, CH2 and SiH2 using a DZP basis set. Again, the CASSCF/MRCI values are in excellent agreement with the FCI results, whereas SDCI values, whether computed as an expectation value or as an energy derivative, are much worse. The results obtained using the CPF approach are in considerably better agreement with the FCI results than SDCI, and are similar in quality to the SDCI energy derivative results with the inclusion of Davidson's correction.  相似文献   

10.
The nuclear-electronic orbital (NEO) method was modified and extended to positron systems for studying mixed positronic-electronic wavefunctions, replacing the mass of the proton with the mass of the positron. Within the modified NEO framework, the NEO-HF (Hartree-Fock) method provides the energy corresponding to the single-configuration mixed positronic-electronic wavefunction, minimized with respect to the molecular orbitals expressed as linear combinations of Gaussian basis functions. The electron-electron and electron-positron correlation can be treated in the NEO framework with second-order perturbation theory (NEO-MP2) or multiconfigurational methods such as the full configuration interaction (NEO-FCI) and complete active space self-consistent-field (NEO-CASSCF) methods. In addition to implementing these methods for positronic systems, strategies for calculating electron-positron annihilation rates using NEO-HF, NEO-MP2, and NEO-FCI wavefunctions were also developed. To apply the NEO method to the positronium hydride (PsH) system, positronic and electronic basis sets were optimized at the NEO-FCI level and used to compute NEO-MP2 and NEO-FCI energies and annihilation rates. The effects of basis set size on NEO-MP2 and NEO-FCI correlation energies and annihilation rates were compared. Even-tempered electronic and positronic basis sets were also optimized for the e+LiH molecule at the NEO-MP2 level and used to compute the equilibrium bond length and vibrational energy.  相似文献   

11.
Minimal basis set SCF calculations are reported for the ground states and positive and negative ions of carbazole and tirnitrofluorenone. For carbazole, wavefunctions for several low-lyng excited states have also been obtained. Methods for surmounting convergence difficulties for these large systems are discussed. Relaxation effects in the calculations of excitations energies are considered and found to be significant. Calculated energies are compared to experimental results.  相似文献   

12.
The full configuration interaction (FCI) study of the ground state of the neutral beryllium trimer has been performed using an atomic natural orbitals [3s2p1d] basis set. Both triangular and linear structures have been considered for the Be(3) cluster. The optimal geometry for the equilateral triangle has been calculated. The potential energy cut sections along the normal a(1)(') mode and one of the components of the e(') mode have then been studied. The FCI symmetric atomization potential of the linear cluster is also reported. It shows a secondary van der Waals minimum at a long bond distance. All singular points in the potential energy curves are characterized. Other properties, like dissociation energies D(e) and vibrational frequencies, have been estimated from a fourth-order fitting of a large range of points around the minima. The calculated FCI wave number values for the nu(1) and nu(2) normal modes are (467.33+/-0.43) cm(-1) and (390.77+/-0.56) cm(-1).  相似文献   

13.
The geometries, interaction energies, and vibrational properties of (HF)2, (HCl)2, and (HBr)2 have been investigated using a variety of hybrid density functional methods and the 6‐311+G(2df,p) basis set. Although most of the density functional methods predict geometries in reasonable agreement with experiment, methods containing the LYP correlation functional yield geometrical parameters in slightly better agreement. The (HF)2 interaction energy, predicted by the hybrid density functional methods, is in reasonable agreement with experiment, but the (HCl)2 and (HBr)2 interaction energies are underestimated substantially. The frequency shift for the X? H donor bond correlates linearly with the elongation of the X? H bond upon complexation, and is predicted reasonably well by methods containing the LYP functional. Overall, the hybrid density functional methods adequately predict the properties of the halide dimers. It is interesting to note that the BHandHLYP and B1LYP density functional methods offer a competitive alternative to the popular B3LYP method. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1590–1597, 2001  相似文献   

14.
Benchmark results for spin-flip (SF) coupled-cluster and multireference (MR) methods for bond-breaking in hydrocarbons are presented. The nonparallelity errors (NPEs), which are defined as an absolute value of the difference between the maximum and minimum values of the errors in the potential energy along bond-breaking curves, are analyzed for (i) the entire range of nuclear distortions from equilibrium to the dissociation limit and (ii) in the intermediate range (2.5-4.5 A), which is the most relevant for kinetics modeling. For methane, the spin-flip and MR results are compared against full configuration interaction (FCI). For the entire potential energy curves, the NPEs for the SF model with single and double substitutions (SF-CCSD) are slightly less than 3 kcal/mol. Inclusion of triple excitations reduces the NPEs to 0.32 kcal/mol. The corresponding NPEs for the MR-CI are less than 1 kcal/mol, while those of multireference perturbation theory are slightly larger (1.2 kcal/mol). The NPEs in the intermediate range are smaller for all of the methods. The largest errors of 0.35 kcal/mol are observed, surprisingly, for a spin-flip approach that includes triple excitations, while MR-CI, CASPT2, and SF-CCSD curves are very close to each other and are within 0.1-0.2 kcal/mol of FCI. For a larger basis set, the difference between MR-CI and CASPT2 is about 0.2 kcal/mol, while SF-CCSD is within 0.4 kcal/mol of MR-CI. For the C-C bond breaking in ethane, the results of the SF-CCSD are within 1 kcal/mol of MR-CI for the entire curve and within 0.4 kcal/mol in the intermediate region. The corresponding NPEs for CASPT2 are 1.8 and 0.4 kcal/mol, respectively. Including the effect of triples by energy-additivity schemes is found to be insignificant for the intermediate region. For the entire range of nuclear separations, sufficiently large basis sets are required to avoid artifacts at small internuclear separations.  相似文献   

15.
《Chemical physics》1987,115(3):405-421
A series of MC SCF calculations have been carried out on C2, N2, O2, and F2 with the goal of obtaining compact wavefunctions which recover a significant fraction of the electron correlation effects important for bond dissociation. The active orbital space is varied in size, with the largest spaces including the molecular orbitals derived from 2s, 2p, 3s, 3p and 4p atomic orbitals. Several basis sets ranging in size from 5s3p to 5s4p2d1f are investigated to determine the flexibility in the basis set needed with various choices of the active orbital space. The best extended-valence MC SCF (EVMC) dissociation energies are 0.2–0.5 eV less than the experimental values, indicating that further enlargement of the active orbital space is necessary to achieve 0.1 eV accuracy in the computed dissociation energies. The EVMC calculations reveal that, for the calculation of the dissociation energies, inclusion of non-valence orbitals is much more important for O2 and F2 than for C2 and N2. The EVMC results are compared with the predictions of full fourth-order perturbation theory, coupled cluster theory, and with the best available CI calculations.  相似文献   

16.
For the atoms with Z ≤ 11, energies obtained using the "initiator" extension to full configuration interaction quantum Monte Carlo (i-FCIQMC) come to within statistical errors of the FCIQMC results. As these FCIQMC values have been shown to converge onto FCI results, the i-FCIQMC method allows similar accuracy to be achieved while significantly reducing the scaling with the size of the Slater determinant space. The i-FCIQMC electron affinities of the Z ≤ 11 atoms in the aug-cc-pVXZ basis sets are presented here. In every case, values are obtained to well within chemical accuracy [the mean absolute deviation (MAD) from the relativistically corrected experimental values is 0.41 mE(h)], and significantly improve on coupled cluster with singles, doubles and perturbative triples [CCSD(T)] results. Since the only remaining source of error is basis set incompleteness, we have investigated using CCSD(T)-F12 contributions to correct the i-FCIQMC results. By doing so, much faster convergence with respect to basis set size may be achieved for both the electron affinities and the FCIQMC ionization potentials presented in a previous paper. With this F12 correction, the MAD can be further reduced to 0.13 mE(h) for the electron affinities and 0.31 mE(h) for the ionization potentials.  相似文献   

17.
Hydrogen‐transfer reactions are an important class of reactions in many chemical and biological processes. Barrier heights of H‐transfer reactions are underestimated significantly by popular exchange–correlation functional with density functional theory (DFT), while coupled‐cluster (CC) method is quite expensive and can be applied only to rather small systems. Quantum Monte‐Carlo method can usually provide reliable results for large systems. Performance of fixed‐node diffusion quantum Monte‐Carlo method (FN‐DMC) on barrier heights of the 19 H‐transfer reactions in the HTBH38/08 database is investigated in this study with the trial wavefunctions of the single‐Slater–Jastrow form and orbitals from DFT using local density approximation. Our results show that barrier heights of these reactions can be calculated rather accurately using FN‐DMC and the mean absolute error is 1.0 kcal/mol in all‐electron calculations. Introduction of pseudopotentials (PP) in FN‐DMC calculations improves efficiency pronouncedly. According to our results, error of the employed PPs is smaller than that of the present CCSD(T) and FN‐DMC calculations. FN‐DMC using PPs can thus be applied to investigate H‐transfer reactions involving larger molecules reliably. In addition, bond dissociation energies of the involved molecules using FN‐DMC are in excellent agreement with reference values and they are even better than results of the employed CCSD(T) calculations using the aug‐cc‐pVQZ basis set. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
19.
The energy positions and the wavefunctions of 2S autoionizing states of the neutral lithium atom have been calculated using the derivative method with a Hylleraas-type basis set. Computed energies are in good agreement with experiment and with other theoretical results.  相似文献   

20.
We propose a data set of bond lengths for 8 selected transition metal dimers (Ag(2), Cr(2), Cu(2), CuAg, Mo(2), Ni(2), V(2), and Zr(2)) and another data set containing their atomization energies and the atomization energy of ZrV, and we use these for testing density functional theory. The molecules chosen for the test sets were selected on the basis of the expected reliability of the data and their ability to constitute a diverse and representative set of transition element bond types while the data sets are kept small enough to allow for efficient testing of a large number of computational methods against a very reliable subset of experimental data. In this paper we test 42 different functionals: 2 local spin density approximation (LSDA) functionals, 12 generalized gradient approximation (GGA) methods, 13 hybrid GGAs, 7 meta GGA methods, and 8 hybrid meta GGAs. We find that GGA density functionals are more accurate for the atomization energies of pure transition metal systems than are their meta, hybrid, or hybrid meta analogues. We find that the errors for atomization energies and bond lengths are not as large if we limit ourselves to dimers with small amounts of multireference character. We also demonstrate the effects of increasing the fraction of Hartree-Fock exchange in multireference systems by computing the potential energy curve for Cr(2) and Mo(2) with several functionals. We also find that BLYP is the most accurate functional for bond energies and is reasonably accurate for bond lengths. The methods that work well for transition metal bonds are found to be quite different from those that work well for organic and other main group chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号