首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new electrochemical sensing platform based on tetra‐amino cobalt (II) phthalocyanine (TACoPc) ingrained polyaniline (PANI) nanofiber composite (TACoPc/PANI hybrid) has been developed for the selective detection of dopamine. The uniform fibrous network of PANI/TACoPc hybrid was synthesized by a one‐step oxidative polymerization at room temperature. The synthesized nanocomposite was characterized using field emission scanning electron microscopy (FESEM), energy dispersive X‐ray (EDX), fourier transmission infrared spectroscopy (FTIR), raman spectroscopy, X‐ray diffraction (XRD) and UV‐Visible spectroscopy. The electrochemical behavior of the TACoPc/PANI hybrid material was studied by using different electrochemical techniques, including cyclic voltammetry (CV) and chronoamperometry in 0.1 M phosphate buffer solution (PBS) of pH 7 by modifying the glassy carbon electrode (GCE). Due to the synergistic impact of PANI and TACoPc, the suggested altered electrode provided superior catalytic performance for dopamine even in the presence of ascorbic acid. It exhibited a linear reaction with a high sensitivity of 1.212 μA/μM cm?2 and a low detection limit of 0.064 μM over the 20–200 μM concentration range in 0.1 M PBS. One of the commonly faced problems of interference of ascorbic acid and uric acid in the electrochemical detection of dopamine was completely excluded from this modified electrode which led to an increase in the catalytic activity of the material for the detection of dopamine in the presence of ascorbic acid.  相似文献   

2.
In this study, we synthesized molybdenum disulfide/polyaniline (MoS2/PANI) nanocomposite via in situ polymerization of aniline in the presence of thin-layered MoS2. The as-prepared MoS2/PANI nanocomposite obtained an improved electrochemical performance due to the physisorption interaction between aromatic aniline and the basal plane of MoS2. Furthermore, we constructed a new kind of electrochemical sensor based on MoS2/PANI nanocomposite for the detection of chloramphenicol, which showed an excellent performance. The sensor has a high sensitivity and wide detection range from 1×10-7 mol/L to 1×10-4 mol/L, with a low detection limit of 6.9×10-8 mol/L.  相似文献   

3.
《Electroanalysis》2018,30(3):571-582
The present study deals with the development of an electrochemical sensor for quantitative determination of Bezafibrate (BZF) based on carbon nanofibers/polyaniline/platinum nanoparticles modified carbon paste electrode (CNF/PANI/Pt/CPE). BZF is a fibric acid derivative and is used largely in the treatment of lipid disorders. The nanocomposite was synthesized by in situ polymerization of aniline using ammonium persulphate and platinum nanoparticles were uniformly decorated on the CNF/PANI surface by reducing hexachloroplatinic acid using sodium borohydride. The electrochemical response of BZF at CNF/PANI/Pt/CPE was studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The above study resulted into significant improvement of the electrochemical signal towards the oxidation of BZF, revealing that the oxidation process is highly favorable at the surface of modified electrode. The anodic peak current Ip (μA) is found to be linearly dependent on BZF concentration in the range of 0.025 μM to 100 μM with a detection limit of 2.46 nM. The practical analytical utilities of the sensor were investigated by performing the experiments on synthetic pharmaceutical formulations, human blood serum and urine samples which offered good recovery, suggesting the high efficacy and authenticity of CNF/PANI/Pt/CPE sensor for BZF determination.  相似文献   

4.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

5.
合成聚苯胺/碳化钨复合材料及聚合机理探讨   总被引:1,自引:0,他引:1  
黄惠  郭忠诚 《高分子学报》2010,(10):1180-1185
采用在原位聚合苯胺的反应介质中分散碳化钨(WC)的方法制备了掺杂聚苯胺/碳化钨(PANI/WC)复合物,并研究了苯胺在WC表面的聚合机理.通过扫描电镜(SEM)、透射电镜(TEM)、傅立叶红外光谱(FTIR)、拉曼光谱(Raman)和X射线衍射(XRD)对复合物进行了表征.结果表明,苯胺的聚合倾向于在WC颗粒表面进行,形成了PANI包覆WC的复合材料;WC粒子与PANI大分子之间存在强的相互作用,并且复合前后WC的晶型并未发生变化,WC的存在导致红外光谱有明显的蓝移现象,复合后在3446 cm-1处的红外吸收峰变得很弱;在拉曼光谱中,代表醌环C N键的伸缩振动峰红移了9 cm-1,并且强度也有很大程度提高.说明PANI与WC之间有化学键的作用,它们之间的化学键作用发生在C N键的N原子上.聚合反应优先在WC粒子表面进行,生成PANI包覆结构,并提出了PANI/WC复合物的形成机制.  相似文献   

6.
This study develops a novel approach to morphology‐controlled N‐doped porous carbons (NPC) derived from supramolecular crosslinked polypyrrole hydrogel (PPy‐gel) with tetra‐functional tetrakis(4‐carboxyphenyl)porphyrin as dopant and cross‐linker. Both optimized PPy‐gel and NPC realize acetaminophen determination at nanomolar level, displaying record‐low respective detection limits of 3.0 and 1.0 nM (S/N=3). The optimized NPC demonstrates necklace‐like structure with more edge pyridinic N, revealing better electronic conductivity and higher electrochemically active surface area, and consequently higher sensitivity and selectivity. Even in the presence of three interferences (ascorbic acid, dopamine and uric acid), NPC based electrochemical sensor also shows the ultra‐low detection limit (1.2 nM). The promising application potential of the sensor is proved by the high consistence between measurements in pharmaceutical sample and established acetaminophen standard curve. Moreover, the determination results of acetaminophen in human urine sample obtained by this sensor were in a good agreement with the reference values assayed by HPLC.  相似文献   

7.
聚苯胺内方形微米管和方形微米棒的可控制备和结构   总被引:2,自引:1,他引:1  
李久明  朱英  解强  万梅香  江雷 《高分子学报》2008,(11):1049-1054
以柠檬酸为掺杂剂、过硫酸铵为氧化剂,通过改变苯胺单体的浓度实现了聚苯胺微/纳米结构的可控的自组装制备.在较高苯胺单体浓度时,自组装得到具有内方形的导电态聚苯胺微米管,其直径约为580~300nm,管壁厚约为80 nm.而在极稀的苯胺单体浓度时,自组装得到正方形横截面的方形微米棒,其横截面的边长约为690~290 nm,长度约为1~40μm.结构表征结果证明,所得的微米方形棒是N—N单键结合的聚氮烷;而延长聚合反应时间,则可得到本征态聚苯胺微米管.  相似文献   

8.
Rodrigues JA  Barros AA 《Talanta》1995,42(7):915-920
A method for the determination of aniline was developed, based on the diazotization and coupling of the aromatic amine to form an azo compound capable of being determined by adsorptive stripping voltammetry. A fast derivatization procedure was developed using 1-naftol as the coupling agent. A detection limit of 0.8 mug/l was obtained for aniline, using an accumulation time of 2 min. The method was applied in the determination of the amount of aniline in the colouring matter D&C Red No. 33, after a liquid-liquid extraction with chloroform, before and after submitting the colouring matter to a process of degradation, using accelerated light conditions in the presence of ascorbic acid.  相似文献   

9.
The polyaniline micro/nanostructure was prepared by a self‐assembly process with molybdic acid as dopants in the presence of ammonium persulfate as the oxidant. It was found that the morphology of PANI micro/nanostructure was affected by the concentration of the dopant, that is, the morphology of PANI changed from nanofibers to co‐existence of nanofibers and microspheres as the molar ratio of molybdic acid to aniline varied from 0.01 to 1.5. Under the same condition it was also found that the conductivity value of PANI enhanced from 4.58×10?3 S·cm?1 to 3.8×10?1 S·cm?1. The structure of PANI was characterized by FTIR and XRD which confirmed the presence of the molybdic acid in the PANI. The electrochemical characteristics of the PANI nanofibers were investigated by means of cyclic voltammetry. The morphology of PANI in the process of polymerization was characterized by SEM. It was found that when the molar ratio of molybdic acid to aniline was 0.3, the morphology of PANI was co‐existence of nanofibers and microspheres and the formation of microspheres was ahead of the nanofibers.  相似文献   

10.
An electrochemical sensor based on modification of carbon paste electrode by glutathione‐capped copper nanoclusters silica nanoparticles (CuNCs/SiO2NPs) composite for determination of dopamine in the presence of ascorbic acid was presented. Transmission electron microscopy, scanning electron microscopy, energy dispersive X‐Ray analysis, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction and electrochemical impedance spectroscopy were used for characterization of the developed electrode. The electrochemical behavior of dopamine on CuNCs/SiO2NPs/carbon paste electrode was investigated by cyclic voltammetry and differential pulse voltammetry. Dopamine was determined in the range of 10.0 – 900.0 μM, and the limit of detection was obtained as 0.43 μM. The electrochemical behaviors of the coexisting electroactive species, which often cause interference with the determination of dopamine, were investigated. The results show that the developed electrode does not show any interference with respect to coexisting species, even in the presence of ascorbic acid. The developed electrochemical sensor was further employed for the determination of dopamine in human blood plasma, with a good recovery.  相似文献   

11.
With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Aunano-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5-3000 μmol/L, with the limit of detection of 1 μmol/L(S/N>3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.  相似文献   

12.
Chloroprene rubber-polyaniline (PANI) coated nylon fiber composites containing PANI powder were prepared by mechanical mixing on a two-roll mill. PANI was synthesized by chemical polymerization of aniline in presence of hydrochloric acid. PANI coated nylon fiber was prepared by in situ polymerization of aniline on nylon fiber. The cure parameters cure kinetics, filler dispersion, mechanical properties, DC electrical conductivity and thermal degradation parameters of the composites were evaluated. Cure rate index and cure reaction constants indicated that the rate of cure reaction changes on filler addition. Filler addition at higher loadings led to agglomeration. The tensile strength and modulus values increased suggesting a reinforcement effect. The conductivity, thermal characteristics and thermal degradation kinetic parameters are also presented.  相似文献   

13.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

14.
Jorge Yánez Heras 《Talanta》2007,71(4):1684-1689
The sequential electrochemical polymerization of aniline and N-(3-propane sulfonic acid)aniline (PSA) is proposed to construct a sensor able to detect ascorbate at physiological conditions. Compared to poly(aniline) modified electrode, a device with improved conducting and electrochemical properties at neutral pH is obtained. The electrochemical copolymerization of the same starting materials is also carried out. For a PSA:aniline ratio of 10:90, a polymer with a similar electrochemical behavior to the one grown in the sequential mode is observed.The detection of ascorbate was tested for both configurations at pH 7.2, the modified electrode is able to determine ascorbate at 0 mV versus Ag/AgCl; an optimized sensor constructed by sequential polymerization can easily detect ascorbate concentrations with a detection limit of 2.2 μM. Uric acid and dopamine does not interfere in the ascorbate determination.  相似文献   

15.
Interactions between the π bonds in the aromatic rings of polyaniline (PANI) with carbon nanostructures (CNs) facilitate charge transfer between the two components. Different types of phenyleneamine‐terminated CNs, including carbon nano‐onions (CNOs) and single‐walled and multi‐walled carbon nanotubes (SWNTs and MWNTs, respectively), were prepared as templates, and the CN/PANI nanocomposites were easily prepared with uniform core–shell structures. By varying the ratio of the aniline monomers relative to the CNs in the in situ chemical polymerization process, the thickness of the PANI layers was effectively controlled. The morphological and electrical properties of the nanocomposite were determined and compared. The thickness and structure of the PANI films on the CNs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and infrared spectroscopy. TEM and SEM revealed that the composite films consisted of nanoporous networks of CNs coated with polymeric aniline. The electrochemical properties of the composites were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. These studies showed that the CN/PANI composite films had lower resistance than pure polymeric films of PANI, and the presence of CNs much improved the mechanical stability. The specific electrochemical capacitance of the CNO/PANI composite films was significantly larger than for pure PANI.  相似文献   

16.
Under microwave‐assisted synthesis, polyaniline (PANI) products with multiple nanostructures were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate in the different concentrations of hydrochloric acid solutions. The structural analysis of PANI using FTIR, UV, and XPS indicated that phenazine‐like oligomers were produced in acid‐free and low acidic systems. Moreover, long linear PANI chains were obtained in the presence of highly acidic solutions. The morphology of PANI observed by SEM and TEM showed that nanoscale structures, including stacked sheets, nanotubes, branched nanofibers, and uniform nanofibers, occurred respectively in acid‐free solution, low acidity, medium and high acidity systems, effectively regulating by acidity. The formation mechanism of PANI nanostructures was explored here. The sheets were formed by the oligomers containing flat phenazine rings that can be stacked together with strong π–π interactions. Furthermore, nanotubes were fabricated by the self‐curling of thin sheets consisted of phenazine‐like oligomers with numerous linear units in the chains. The nanofibers are supposed to form by the linear PANI chains and the secondary growth during aniline polymerization caused the branch formation on the nanofibers. All results indicate that acidity, rather than microwave assistance, is the critical factor that determines the polymerization mechanism and the final nanostructure. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3357–3369  相似文献   

17.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

18.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

19.
Zhang Z  Qin W 《Talanta》1996,43(1):119-124
A novel flow sensor based on chemiluminescence (CL) for the determination of ascorbic acid has been proposed. The analytical reagents, luminol and ferricyanide, were both immobilized on an anion-exchange resin column. The CL signal produced by the reaction between luminol and ferricyanide, which were eluted from the column through sodium phosphate injection, was decreased in the presence of ascorbic acid. The CL emission intensity was linear with ascorbic acid concentration in the range 0.01-0.8 mug ml(-1); the detection limit was 5.5 x 10(-3) mug ml(-1). The whole process, including sampling and washing, could be completed in 1 min with a relative standard deviation of less than 5%. The sensor could be reused more than 100 times and has been applied successfully to the analysis of ascorbic acid in pills and vegetables.  相似文献   

20.
The deposition of the polyaniline (PANI) films was monitored using the quartz crystal microbalance (QCM) technique. The films were grown from an aqueous dilute hydrochloric acid solution by the chemical oxidation of aniline using potassium dichromate (KDC). The effect of the initial molar ratio of the KDC/aniline on the yield and the growth rate of the PANI films were studied. There is no optimum initial molar ratio of KDC/aniline of PANI film deposition. Also there was a small depletion period and no degradation to the deposited PANI films. The order of the polymerization kinetics was studied with respect to KDC. The UV-visible spectra of the PANI films grown onto a glass support immersed into the bulk solution were measured. The absorption of the PANI film with the time of polymerization was compared to the growth of the PANI film thickness with time determined from the QCM technique. The characteristics of the PANI film deposition were compared to the corresponding ones that were observed during the oxidative polymerization of aniline with ammonium persulphate (APS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号