首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

2.
This work reports the application of screen‐printed electrodes bulk‐modified with bismuth precursors to the voltammetric determination of 2‐nitrophenol (2‐NP), 4‐nitrophenol (4‐NP) and 2,4‐dinitrophenol (2,4‐DNP) in water samples. A bismuth film was formed at the electrode surface via in situ reduction of the precursor compound contained in the electrode matrix by cathodic polarization at ?1.20 V. The formation of bismuth layer at the precursor‐modified electrodes was assessed by cyclic voltammetric (CV) at different pH values and by optical techniques. The target nitrophenols were voltammetrically determined by recording their reduction peaks in the differential pulse (DP) mode. The composition and content of the precursor compounds in the printed ink and the effect of the pH of the supporting electrolyte on the DP reduction currents of the 3 target nitrophenols were studied. The limits of quantification (LOQs) in three water matrices (distilled water, tap water and surface water) were in the range 1.1–2.2 µmol L?1. Using a simple solid‐phase extraction (SPE) procedure with Lichrolut EN cartridges and elution with methanol, a preconcentration factor of 100 was achieved; the LOQs were 0.021, 0.027 and 0.025 µmol L?1 for 2‐NP, 4‐NP and 2,4‐DNP, respectively. The recoveries of samples spiked with the 3 target nitrophenols at two concentration levels (0.04 and 0.1 µmol L?1) were always >87 %.  相似文献   

3.
《Electroanalysis》2006,18(9):854-861
Nafion polymer coated bismuth‐film‐modified carbon film electrodes have been investigated for reducing the influence of contaminants such as surfactants in the anodic stripping voltammetry of trace metal ions. The influence of the coating on electrode response has been tested with both ex situ and in situ bismuth film deposition, with and without the polymer coating. The electrode assemblies and interfacial characteristics in the presence of the non‐ionic surfactant Triton‐X‐100 have been probed with electrochemical impedance spectroscopy. The Nafion coating successfully decreases the adsorption of Triton on the bismuth film surface, and demonstrates that this strategy allows measurement of these trace metals in environmental samples containing surfactants.  相似文献   

4.
The bismuth‐coated electrode is known to be prone to errors caused by copper(II). This study investigates copper(II) interference at bismuth film electrode for the detection of lead(II) and cadmium(II). It was conducted using glassy carbon electrode, while the bismuth film was plated in situ simultaneously with the target metal ions at ? 1200 mV. Copper(II) presented in solution significantly reduced the sensitivity of the electrode, for example there was an approximately 70 % and 90 % decrease in peak signals for lead(II) and cadmium(II), respectively, at a 10‐fold molar excess of copper(II). The decrease in sensitivity was ascribed to the competition between copper and bismuth or the metal ions for surface active sites. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) analysis suggested a large decrease in the amount of bismuth nanoparticles formed on the electrode surface in the presence of copper(II) occurred, validating the competition between copper and bismuth ions for surface active sites. Recovery of the stripping signal of lead(II) and cadmium(II) was obtained by adding ferrocyanide ion to the solution. Finally, the proposed method was successfully applied to determine lead(II) and cadmium(II) in water samples and the method was validated by ICP‐MS technique.  相似文献   

5.
Nano‐bismuth has excellent electrochemical properties. However, it is still unclear how the particle size of nano‐bismuth influences its electrochemical thermodynamic properties. In this paper, spherical bismuth nanoparticles with different particle sizes were prepared by solvothermal method; the electrode potentials, the temperature coefficients of the electrode potentials and the thermodynamic functions of reaction for nano‐bismuth electrodes with different particle sizes at different temperatures were determined; and the effects of particle size on the electrode potential, the temperature coefficient and the thermodynamic functions were discussed. The experimental results show that particle size of bismuth nanoparticles has a significant influences on the electrochemical thermodynamic properties. The standard electrode potential of the nano‐bismuth electrode with a diameter of 39.9 nm was 0.009 V lower than that of the ordinary standard electrode (0.308 V); the temperature coefficient of the electrode potential with a diameter of 39.9 nm was nearly double that of 85.9 nm. With the particle sizes decrease, the standard molar Gibbs energy of reaction, the standard molar enthalpy of reaction, the standard molar entropy of reaction, the molar reversible reaction heat and the temperature coefficient increase; and these quantities are linearly related to the reciprocal of the particle diameter.  相似文献   

6.
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.  相似文献   

7.
In this paper 1‐(2‐pyridylazo)‐2‐naphthol (PAN) and ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) were mixed with graphite powder to get a modified carbon paste electrode (PAN‐IL‐CPE), which was further used for the sensitive determination of bismuth(III). By the co‐contribution of the formation of PAN‐Bi complex and the accumulation effect of IL, more bismuth(III) was electrodeposited on the surface of the PAN‐IL‐CPE. Then the reduced Bi was oxidized and detected by differential pulse anodic stripping voltammetry (DPASV) with the oxidation peak appeared at 0.17 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the bismuth(III) concentration in the range from 0.04 to 7.5 μmol L?1 with the detection limit as 3.9 nmol L?1. The proposed method was successfully applied to the stomach medicine sample detection with good recovery.  相似文献   

8.
This work reports on the electroanalytical performance of a glassy carbon electrode (GCE) modified with antimony and bismuth (Sb/Bi-GCE) in detecting heavy metal ions using lead and cadmium as model analytes. The electroanalytical performance of the Sb/Bi-GCE surface was compared to the bismuth modified glassy carbon electrode (Bi-GCE) as well as the antimony modified glassy carbon electrode (Sb-GCE). The Sb/Bi-GCE exhibited excellent figures of merit compared to Bi-GCE and Sb-GCE surfaces. For example, the limit of detection for lead was 0.01 ppb using Sb/Bi-GCE and 0.1 and 1 ppb on Bi-GCE and Sb-GCE, respectively.  相似文献   

9.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

10.
A graphene‐based electrochemical sensing platform for sensitive determination of explosive nitroaromatic compounds (NACs) was constructed by means of electrochemical reduction of graphene oxide (GO) on a glassy carbon electrode (GCE). The electrochemically reduced graphene (ER‐GO) adhered strongly onto the GCE surface with a wrinkled morphology that showed a large active surface area. 2,4‐Dinitrotoluene (2,4‐DNT), as a model analyte, was detected by using stripping voltammetry, which gave a low detection limit of 42 nmol L−1 (signal‐to‐noise ratio=3) and a wide linear range from 5.49×10−7 to 1.1×10−5 M . Further characterizations by electrochemistry, IR, and Raman spectra confirmed that the greatly improved electrochemical reduction signal of DNT on the ER‐GO‐modified GC electrode could be ascribed to the excellent electrocatalytic activity and high surface‐area‐to‐volume ratio of graphene, and the strong π–π stacking interactions between 2,4‐DNT and the graphene surface. Other explosive nitroaromatic compounds including 1,3‐dinitrobenzene (1,3‐DNB), 2,4,6‐trinitrotoluene (TNT), and 1,3,5‐trinitrobenzene (TNB) could also be detected on the ER‐GO‐modified GC electrode at the nM level. Experimental results showed that electrochemical reduction of GO on the GC electrode was a fast, simple, and controllable method for the construction of a graphene‐modified electrode for sensing NACs and other sensing applications.  相似文献   

11.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery.  相似文献   

12.
The catalytic voltammetric protocol for the determination of titanium at a bismuth film electrode is presented. The method is based on the reduction of the Ti(IV)‐oxalate complex to Ti(III)‐oxalate in an acidic solution. It was proven that the addition of KClO3 causes rapid oxidation of Ti(III)‐oxalate and, subsequently, an increase of the reduction peak current of Ti(IV) at the bismuth film electrode. Parameters that influence the Ti response, including the film preparation, solution pH, oxalate acid and chlorate concentrations, were optimized. The exploitation of the bismuth film electrode under the optimized conditions yielded a stable response for titanium, with high sensitivity (12.5 μA μM?1), good precision (RSD=5.0%) and a low detection limit (1×10?8 M).  相似文献   

13.
《Electroanalysis》2017,29(11):2444-2453
Heavy metals, being one of the most toxic and hazardous pollutants in natural water, are of great public health concern. Much effort is still being devoted to the optimization of the electroanalytical methods and devices, particularly for the development of novel electrode materials in order to enhance selectivity and sensitivity for the analysis of heavy metals. The ability of 3D‐printing to fabricate objects with unique structures and functions enables infinite possibilities for the creation of custom‐made electrochemical devices. Here, stainless steel 3D‐printed electrodes (3D‐steel) have been tested for individual and simultaneous square wave anodic stripping analysis of Pb and Cd in aqueous solution. Electrodeposition methods have also been employed to modify the steel electrode surface by coating with a thin gold film (3D−Au) or a bismuth film (3D−Bi) to enhance the analytical performance. All 3D‐printed electrodes (3D‐steel, 3D−Au and 3D−Bi) have been tested against a conventionally employed glassy carbon electrode (GC) for comparison. The surface modified electrodes (3D−Au and 3D−Bi) outperformed the GC electrode demonstrating higher sensitivity over the studied concentration ranges of 50–300 and 50–500 ppb for Pb and Cd, respectively. Owing to the bismuth property of binary alloys formation with heavy metals, 3D−Bi electrode displayed well‐defined, reproducible signals with relatively low detection limits of 3.53 and 9.35 ppb for Pb and Cd, respectively. The voltammetric behaviour of 3D−Bi electrode in simultaneous detection of Pb and Cd, as well as in individual detection of Pb in tap water was also monitored. Overall, 3D‐printed electrodes exhibited promising qualities for further investigation on a more customizable electrode design.  相似文献   

14.
A new chemically modified bismuth film electrode coated with an ionic liquid [(1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB)] and Nafion was developed for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Compared with conventional bismuth film electrodes, this electrode exhibited greatly improved electrochemical activity for Pb2+ and Cd2+ detection due to the unique properties of Nafion polymer and ionic liquid. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 10–120 µg L?1 with a detect limit of 0.2 µg L?1 for Pb2+, and 0.5 µg L?1 for Cd2+ for 120s deposition. High reproducibility was indicated from the relative standard deviations (1.9 and 2.5 %) for nine repetitive measurements of 20 µg L?1 Pb2+ and Cd2+, respectively. In addition, the surface characteristics of the modified BiFE were investigated by scanning electron microscopy (SEM), and results showed that fibril‐like bismuth nanostructures were formed on the porous Nafion polymer matrix. Finally, the developed electrode was applied to determine Pb2+ and Cd2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

15.
Performances of a screen‐printed microband electrode prepared by ex situ bismuth deposition are reported. According to the low bismuth toxicity, this electrode represents an environmentally friendly alternative to mercury modified sensors, particularly for on‐field measurements. The electrochemical behaviour of the microband electrode has been studied and is in agreement with microelectrode theory before and after bismuth modification. Sensitive cadmium analysis achieved in nondeaerated and unstirred solutions leads to a detection limit of 1.3 μg L?1 using SWASV for 120 s deposition time. This sensor has been successfully applied to a nontreated river water sample.  相似文献   

16.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

17.
We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two‐electron reduction of oxygen occurs at low potentials, whereas four‐electron reduction is key for energy‐transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four‐electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme‐modified electrode for energy‐transformation devices is evident.  相似文献   

18.
By using a 1‐butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the working electrode, graphene (GR) nanosheets and silver nanoparticles (Ag NPs) were step by step electrodeposited on the surface of the CILE with potentiostatic method. The fabricated Ag/GR/CILE was used as a new platform for protein electrochemistry and hemoglobin (Hb) was immobilized on its surface with chitosan (CTS) as film forming material. In 0.1 mol/L phosphate buffer solution, a pair of well‐defined and quasi‐reversible redox peaks appeared on the CTS/Hb/Ag/GR/CILE with a formal peak potential of ?0.202 V (vs. SCE) and a peak‐to‐peak separation (ΔEp) of 68 mV, which indicated that direct electrochemistry of Hb was realized on the modified electrode. The results could be attributed to the synergistic effects of Ag NPs and GR nanosheets on the electrode surface, which provided a specific three‐dimensional structure with high conductivity and good biocompatibility. The Hb modified electrode showed excellent electrocatalysis to the reduction of trichloroacetic acid in the concentration range from 0.8 to 22.0 mmol/L with a detection limit of 0.42 mmol/L (3σ). Moreover, the modified electrode exhibited favorable reproducibility, long term stability and accuracy, with potential applications in the third‐generation electrochemical biosensor.  相似文献   

19.
Yang HY  Chen WY  Sun IW 《Talanta》1999,50(5):977-984
A Tosflex-mercury film electrode (TMFE) was prepared by spin-coating a solution of the perfluorinated anion exchange polymer Tosflex onto a glassy carbon electrode surface followed by electrodeposition of mercury film on this electrode. This electrode was used for the determination of trace bismuth(III) which was preconcentrated onto the TMFE as anionic bismuth(III) complexes with chloride in a chloride medium. The preconcentration was carried out at a potential of-0.2 V, and the preconcentration of the bismuth(III) was enhanced significantly by the anion-exchange feature of Tosflex. The accumulated bismuth(III) was then determined by anodic square-wave stripping voltammetry (SWSV). Various parameters influencing the determination of bismuth(III) were examined in detail. With 2 min accumulation, the analytical signal versus concentration dependence was linear up to 50 ppb, and the detection limit was 0.58 ppb. This modified electrode showed good resistance to the interferences from surface-active compounds and common ions.  相似文献   

20.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号