首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

2.
In this work a gold electrode modified with self‐assembled layers (SAMs) composed with organic S‐containing compound and gold nanoparticles was prepared. The electrode with SAMs endowed with gold nanoparticles gave the high catalytic effect for ethylene glycol (EG) electrooxidation in solution at pH 7. For this novel sensor a linear relationship between the current response of EG at the potential of peak maximum (jp) and the concentration of this compound in solution (cEG) was found over the range 0.1 µM to 0.7 M with the detection sensitivity jp/cEG equal to about 5 A cm?2 mol?1 dm3 (at v=0.1 V s?1) and the detection limit of 0.046 µM.  相似文献   

3.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

4.
A simple and sensitive differential pulse stripping voltammetric method was developed for the determination of antimony(III) using a selenium-doped carbon paste electrode modified with an ionic liquid, graphene, and gold nanoparticles. The conditions, including the mass of graphene, concentration of hydrochloric acid, deposition potential, and deposition time were optimized by single-factor experiments. Under the optimal conditions, a linear equation of ISb(III) (µA)?=??16.9882???11.0929 c (µmol/L) (R?=?0.9965) and a detection limit of 2.7?×?10?8?mol/L were obtained for 8.0?×?10?8 to 4.8?×?10?6?mol/L antimony(III). The response shows that the sensor enhances the sensitivity of antimony due to the high conductivity and large surface areas of the ionic liquid, graphene, and gold nanoparticles. This electrode may provide a new sensing platform for the determination of antimony.  相似文献   

5.
In this work, we report on the preparation of a simple, sensitive DNA impedance sensor. Firstly gold nanoparticles were electrodeposited on the surface of a gold electrode, and then probe DNA was immobilized on the surface of gold nanoparticles through a 5′‐thiol‐linker. Electrochemical impedance spectroscopy (EIS) was used to investigate probe DNA immobilization and hybridization. Compared to the bare gold electrode, the gold nanoparticles modified electrode could improve the density of probe DNA attachment and the sensitivity of DNA sensor greatly. The difference of electron transfer resistance (ΔRet) was linear with the logarithm of complementary oligonucleotides sequence concentrations in the range of 2.0×10?12 to 9.0×10?8 M, and the detection limit was 6.7×10?13 M. In addition, the DNA sensor showed a fairly good reproducibility and stability during repeated regeneration and hybridization cycles.  相似文献   

6.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

7.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

8.
The electrochemical behavior of oxadiargyl at a graphene‐paste electrode modified with an azo dye, 2‐(4‐((4‐acetylphenyl)diazenyl)phenylamino)ethanol (ADPE), ADPE/MGRPE was investigated. The modified electrode showed high electrocatalytic activity toward oxadiargyl. The apparent electron transfer rate constant (ks) and charge transfer coefficient (α) between electrode and ADPE were 1.16 s?1 and 0.41, respectively. The differential pulse voltammetry response of the modified graphene‐paste electrode was linear against the concentration of oxadiargyl in the range from 0.03 to 1.4 mg L?1. The limit of detection was found to be 1.3 µg L?1 (S/N=3). The practical analytical utility of this electrode was demonstrated by measurement of oxadiargyl in river water, soil and rice samples.  相似文献   

9.
A simple, rapid fabricated and sensitive modified electrode for detection of As(III) in alkaline media was proposed. The modified electrode was prepared by co‐electrodeposition of manganese oxides (MnOx) and gold nanoparticles (AuNPs) on the glassy carbon electrode (GCE) with cyclic voltammetry. Linear sweep anodic stripping voltammetry (LS‐ASV) was employed for the determination of arsenic (III) without interference from Cu(II), Hg(II), and other coexisting metal ions. A lower detection limit of 0.057 µg L?1 (S/N=3) were obtained with a accumulation time of 200 s. The proposed method was successfully applied to determine arsenic (III) in real water samples with satisfactory recoveries.  相似文献   

10.
The present work describes the development of a selective, sensitive and stable sensing microsensor for scanning electrochemical microscopy (SECM) to measure H2O2 during electrochemical reduction of oxygen. The microsensor is based on graphene and Poly(3,4‐ethylenedioxythiophene) composite as support to iron (III) hexacyanoferrate (II) (PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor). The electrochemical properties of the PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor showed an excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction with a diminution of the overpotential of about 500 mV in comparison to the process at a bare gold microelectrode. The microsensor presented excellent performance for two dimensional mapping of H2O2 by SECM in 0.1 mol L?1 phosphate buffer solution (pH 7.0). Under optimized conditions, a linear response range from 1 up to 1000 µmol L?1 was obtained with a sensitivity of 0.08 nA L µmol?1 and limit of detection of 0.5 µmol L?1.  相似文献   

11.
A novel nanocomposite integrating the good biocompatibility of polyacrylic resin nanoparticles (PAR) and the good conductivity of colloidal gold nanoparticles was proposed to construct the matrix for the immobilization of hemoglobin (Hb) on the surface of a glassy carbon electrode (GCE). UV‐vis spectra demonstrated that Hb preserved its native structure after being entrapped into the composite film. The direct electrochemistry of hemoglobin (Hb) in this nanocomposite films showed a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks with a formal potential of ?0.307 mV and a constant electron transfer rate of 2.51±0.2 s?1. The resultant amperometric biosensor showed fast responses to the analytes with excellent detection limits of 0.2 µM for H2O2 and 0.89 µM for TCA (S/N=3), and high sensitivity of 1108.6 for H2O2 and 77.14 mA cm?2 M?1 for TCA, respectively. The linear current response was found in the range from 0.59 to 7.3 µM (R2=0.9996) for H2O2 and from 5 to 85 µM (R2=0.9996) for TCA, while the superior apparent Michaelis–Menten constant was 0.012 mM for H2O2 and 0.536 mM for TCA, respectively. Therefore, the PAR‐Au‐Hb nanocomposite as a novel matrix opens up a possibility for further study on the direct electrochemistry of other proteins.  相似文献   

12.
Electrogenerated chemiluminescence (ECL) for DNA hybridization detection is demonstrated based on DNA that was self-assembled onto a bare gold electrode and onto a gold nanoparticles modified gold electrode. A ruthenium complex served as an ECL tag. Gold nanoparticles were self-assembled on a gold electrode associated with a 1,6-hexanedithiol monolayer. The surface density of single stranded DNA (ssDNA) on the gold nanoparticle modified gold electrode was 4.8?×?1014 molecules per square centimeter which was 12-fold higher than that on the bare gold electrode. Hybridization was induced by exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle modified gold electrode (6.7?×?10?12 mol L?1) is much lower than that on a bare gold electrode (1.2?×?10?10 mol L?1). The method has been applied to the detection of the DNA sequence related to cystic fibrosis. This work demonstrates that employment of gold nanoparticles self-assembled on a gold electrode is a promising strategy for the enhancement of the sensitivity of ECL detection of DNA.  相似文献   

13.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

14.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

15.
This work reports the utility of an iridium microwire plated in situ with a bismuth film for the simultaneous determination of Pb(II) and Cd(II) by square‐wave anodic stripping voltammetry (SWASV). The experimental variables (concentration of the bismuth plating solution, preconcentration potential, accumulation time) were investigated. The limit of detection was 1 µg L?1 for Pb(II) and 1.5 µg L?1 for Cd(II) (at 300 s of preconcentration) and the % relative standard deviations were lower than 4.9 % and 5.5 %, respectively, at the 20 µg L?1 level (n=8). In addition, a study was made of coating the iridium‐based bismuth‐film microsensor with a film of Nafion for operation in the presence of surfactants. Finally, the electrode was applied to the determination of Pb(II) and Cd(II) in wastewater and tapwater samples.  相似文献   

16.
Gold ensembles for the trace level sensing of arsenic(III) in the presence of copper(II) are reported. The gold ensembles are fabricated using citrate capped gold nanoparticles which are chemically synthesised in an aqueous solution with an aliquot of this simply cast onto an economical and disposable screen printed electrode. After drying at room temperature, the gold ensembles are ready for use. The gold ensembles are explored towards the sensing of arsenic(III) in the presence of copper(II) using anodic stripping voltammetry where the corresponding stripping peaks are well resolved and using this protocol it is possible to readily detect 3 µg L?1 (3 ppb) with a detection limit of 0.4 µg L?1 (0.4 ppb). Proof‐of‐concept is also shown for the sensing of arsenic(III) in a canal water sample. Given the low cost of the sensor and ease of fabrication, the gold ensembles hold promise for the sensing of arsenic(III) in water samples where copper(II) may be present.  相似文献   

17.
Functionalized‐multiwall carbon nanotubes decorated with redox active copper nanoparticles have been fabricated for sensitive enzyme‐less H2O2 detection. The new nanocomposite was characterized by Transmission electron microscopy, energy dispersive X‐ray analysis and cyclic voltammetry. The response of the modified electrode to H2O2 was examined using amperometry at ?0.45 V vs. Ag/AgCl in a buffer solution at pH 10.0. The developed sensor displayed linear concentration ranges of 0.5–10.0 and 10.0–10000.0 µmol L?1 with a detection limit of 0.3 µmol L?1. The proposed sensor displayed good selectivity for H2O2 detection in the presence of common interferences such as ascorbic acid.  相似文献   

18.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

19.
This research found a cheap and efficient catalyst for electrooxidation of formaldehyde (HCHO). A CuO nano‐crystalline modified glassy carbon electrode (GCE) was fabricated and had an excellent electrocatalytic activity towards the oxidation of HCHO. Both the effect of potential scan rate and the effect of HCHO concentration on the electrocatalytic oxidation performance of the electrode were investigated. The amperometric current response of the electrode was proportional to HCHO concentration in the range of 1.0 µmol·L?1–10.0 mmol·L?1 with a detection limit (s/n=3) of 0.25 µmol·L?1. The electrode was stable, showing the CuO nano‐crystlline is promising for applications in fuel cells and electrochemical sensors.  相似文献   

20.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号