首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This review continues a general presentation of the principles of stereochemistry with special emphasis on the biomedicinal sciences. Here, we discuss and illustrate the phenomenon of substrate stereoselectivity in biochemistry (endogenous metabolism) and principally in xenobiochemistry or drug metabolism. The review begins with an overview of the stereoselective processes occurring in the biomedicinal sciences. The general rule is for distinct stereoisomers, be they enantiomers or diastereoisomers, to elicit different pharmacological responses (Part 5), to a lesser extent be transported with different efficacies (Part 5), and to be metabolized at different rates (this Part). In other words, biological environments discriminate between stereoisomers both when acting on them and when being acted upon by them. The concept of substrate stereoselectivity describes this phenomenon in endogenous biochemistry and xenobiotic metabolism, as discussed and illustrated in the present Part. The sister concept of product stereoselectivity will be presented in Part 8.  相似文献   

2.
The stereochemistry of a peptide determines its spatial features and can profoundly influence its chemical properties and biological activity. Thus, the analysis of the stereochemical properties of a peptide is an important aspect of its characterisation. For such investigations a selector that engages in stereoselective interactions with the peptide analytes is often used. A substantiated knowledge of the underlying molecular recognition mechanism will therefore be helpful in understanding existing and developing new stereoselective analysis systems. After a short introduction concerning the fundamentals of peptide stereoisomers and their biological implications, the stereoselective peptide analysis methods described in the literature are comprehensively reviewed. The characteristics and applications of the employed methods based on various techniques including chromatography (pressure- and electrokinetically driven), capillary electrophoresis, nuclear magnetic resonance spectroscopy and mass spectrometry are discussed. The various selectors that have been utilised to discriminate peptide enantiomers and/or diastereomers are described concurrently. The review concludes with an overview of combinations and comparisons of techniques that have been applied to the analysis of peptide stereoisomers and constitute a trend for further developments.  相似文献   

3.
New, pharmacologically interesting chiral amino compounds, namely, stereoisomers of α‐hydroxynaphthyl‐ß‐carboline, benz[d]azepine and benz[c]azepine analogs as well as N‐α‐hydroxynaphthylbenzyl‐substituted isoquinolines were enantioseparated by high‐performance liquid chromatographic and subcritical fluid chromatographic methods on polysaccharide‐based chiral stationary phases. Separation of the stereoisomers was optimized in both subcritical fluid chromatography and normal phase liquid chromatographic modes by investigating the effects of the composition of the bulk solvent, temperature, and the structures of the analytes and selectors. Both normal phase liquid chromatography and subcritical fluid chromatography exhibited satisfactory performance, albeit with somewhat different effectiveness in the separation of the stereoisomers studied. The optimized methods offer the possibility to apply preparative‐scale separations thereby enabling further pharmacological investigations of the enantiomers.  相似文献   

4.
Since the stereoisomers of molecules with one or more asymmetric centers often exhibit different biological activities (e.g. thalidomide, pheromones), stereoselective synthesis as a method of preparative chemistry is rapidly attaining importance. Of the numerous drugs prepared by total synthesis that contain at least one asymmetric center, only about 20% have so far been used in sterically pure form. Amino acids constitute the greatest “chiral pool” of compounds whose enantiomers can be obtained commercially in large amounts; they are gradually being used more and more frequently as auxiliary agents or educts in asymmetric syntheses.  相似文献   

5.
The synthesis of the organophosphorus nerve agents sarin, tabun, and cyclohexyl methylphosphonofluoridate (GF) produces a mixture of two stereoisomers except for soman where four stereoisomers are produced. Significant differences exist in the reported toxicity and AChE inhibition rates of the various stereoisomers. This makes the ability to distinguish between the different stereoisomers desirable. Five different derivatized cyclodextrin stationary phases developed for gas chromatography were tested for their ability to resolve the nerve agent stereoisomers using a gas chromatograph interfaced to an atomic emission detector. Of the five columns that we examined, only the 2,6-di-O-pentyl-3-O-trifluoroacetyl or 2,6-di-O-pentyl-3-O-butyryl γ-cyclodextrins were able to successfully resolve all four soman stereoisomers. The elution order for each column was determined using solutions of isolated soman stereoisomers. Enantiomers of sarin, tabun, and GF were resolved with varying degrees of success on the different cyclodextrin stationary phases. Only the butyryl γ-cyclodextrin was able to separate the enantiomers of all four of the nerve agents examined in this study. The capacity (k) and selectivity (α) factors were determined for each of the chemical warfare agents successfully separated. The TNO Prins Maurits Laboratory in the Netherlands has previously developed several different chromatographic methods to resolve the stereoisomers of soman, sarin, and tabun. The advantage of the method described here is that commercially available cyclodextrin gas chromatography columns were used to resolve the stereoisomers, thereby facilitating rapid and routine analysis of organophosphorus nerve agents.  相似文献   

6.
Residual stereoisomerism is a form of stereoisomerism scarcely considered so far for applicative purposes, though extremely interesting, since the production of stereoisomers does not involve classical rigid stereogenic elements. In three‐bladed propeller‐shaped molecules, a preferred stereomerization mechanism, related to the correlated rotation of the rings, allows the free interconversion of stereoisomers inside separated sets (the residual stereoisomers) that can interconvert through higher energy pathways. In light of possible future applications as chiral ligands for transition metals in stereoselective processes, some C3‐symmetric phosphorus‐centered propellers, which could exist as residual enantiomers, are synthesized and the possibility of resolving their racemates into residual antipodes is explored. While the tris(aryl)methanes are configurationally stable at room temperature, only selected tris(aryl)phosphane oxides display a configurational stability high enough to allow resolution by HPLC on a chiral stationary phase (CSP HPLC) at a semipreparative level at room temperature. Stability was evaluated through different techniques (circular dichroism (CD) signal decay, dynamic CSP HPLC (CSP DHPLC), dynamic NMR analysis (DNMR)) and the results compared and discussed. Phosphanes were found much less stable than the corresponding phosphane oxides, for which preliminary calculations suggest that the three‐ring‐flip enantiomerization mechanism (M0) would be easier than phosphorus pyramidal inversion. The parameters affecting the configurational stability of the residual enantiomers of C3‐symmetric propellers are discussed.  相似文献   

7.
The crystal and molecular structures of four stereoisomers of tapentadol hydrochloride [systematic name: 3‐(3‐hydroxyphenyl)‐N,N,2‐trimethylpentan‐1‐aminium chloride], C14H24NO+·Cl, a novel analgesic agent, have been determined by X‐ray crystal structure analysis. Resolution of the isomers was carried out by reverse‐phase and chiral high‐performance liquid chromatographic (HPLC) methods. Stereoisomers (I) and (II) crystallize in the monoclinic space group P21, each with two tapentadol cations and two chloride anions in the asymmetric unit, while stereoisomers (III) and (IV) crystallize in the orthorhombic space group P212121, with one tapentadol cation and one chloride anion in the asymmetric unit. The absolute configurations of the four enantiomers were determined unambiguously by X‐ray crystallography. The crystal structures reveal the stereochemistries at the 3‐ethyl and 2‐methyl groups to be R,R, S,S, S,R and R,S in stereoisomers (I)–(IV), respectively. The ethyl and aminopropyl groups adopt different orientations with respect to the phenol ring for (I) and (IV). In all four structures, the chloride ions take part in N—H...Cl and O—H...Cl hydrogen bonds with the tapentadol molecules, resulting in one‐dimensional helical chains in the crystal packing in each case.  相似文献   

8.
Application of a stereoselective Prins/retro-Prins rearrangement sequence from (?)-(R)-campholenyl acetate((?)- 4 ) opens a new access to the naturally occurring (?)-(R, R)-β-necrodol ((?)- 1 ) and its three stereoisomers with high optical purity.  相似文献   

9.
We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R ,2S ,5R )‐(–)‐menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β‐d ‐glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as “structural task‐specific ionic liquids” responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors.  相似文献   

10.
A second series of shape‐persistent alleno–acetylenic macrocycles and monodisperse acyclic oligomers with conformationally less flexible backbones were synthesized in enantiomerically pure form by short, high‐yielding routes starting from optically active 1,3‐diethynylallenes. All seven stereoisomers—two pairs of enantiomers and three achiral stereoisomers—in the macrocyclic series were separated and configurationally assigned. The electronic circular dichroism (ECD) spectra of the D2‐symmetric, (P,P,P,P)‐ and (M,M,M,M)‐configured macrocycles display remarkably intense chiroptical responses. A strong amplification of chirality is observed in the acyclic oligomeric series. Their preference for helical secondary structures of one handedness was supported by X‐ray analysis and computational studies. This new set of data provides proof that outstanding ECD responses are a hallmark of alleno–acetylenic macrocyclic and acyclic oligomeric chromophores.  相似文献   

11.
Despite the great progress in research on molecular carbons containing multiple helicenes around one core, realizing the stereoselectivity of carbons containing multiple helicenes around more cores is still a great challenge. Herein, molecular carbon C204 featuring 12-fold [5]helicenes around four cores was successfully constructed by using nine perylene diimide (PDI) units, and exhibits good solubility and stability. Despite 256 possible stereoisomers caused by the 12-fold [5]helicenes, we only obtained one pair of enantiomers with D3 symmetry. There are four possible pairs of enantiomers with D3 symmetry, namely 7A, 7B, 7C and 7D. Theoretical and experimental results verify that the obtained structure belongs to 7C, which has the lowest energy. The enantiomers can also be separated by chiral HPLC. These results suggest that choosing PDIs as building blocks can not only improve the solubility and stability but also realize the stereoselectivity and chirality of molecular carbons.  相似文献   

12.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

13.
The stereoselective Rauhut–Currier (RC) reaction catalyzed by a cysteine derivative has been explored computationally with density functional theory (M06‐2X). Both methanethiol and a chiral cysteine derivative were studied as nucleophiles. The complete reaction pathway involves rate‐determining elimination of the thiol catalyst from the Michael addition product. The stereoselective Rauhut–Currier reaction, catalyzed by a cysteine derivative as a nucleophile, has also been studied in detail. This reaction was experimentally found to be extremely sensitive to the reaction conditions, such as the number of water equivalents and the effect of potassium counterion. The E1cB process for catalyst elimination has been explored computationally for the eight possible stereoisomers. The effect of explicit water solvation and the presence of counterion (either K+ or Na+) has been studied for the lowest energy enantiomer pair (1S, 2R, 3S)/(1R, 2S, 3R).  相似文献   

14.
Ketamine is an N‐methyl‐d ‐aspartate receptor antagonist that is usually used clinically as a racemic mixture. Its two enantiomers exhibit different pharmacological activities. To determine whether the enantiomers have different pharmacokinetic profiles, a chiral liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of ketamine enantiomers in dog plasma. The enantiomers of ketamine were extracted from 50 μL of plasma by methyl tert‐butyl ether. Adequate chromatographic retention and baseline resolution of the enantiomers were achieved within a runtime of 5 min on a chiral column coated with polysaccharide derivatives, using a gradient mobile phase of acetonitrile and 10 mm ammonium bicarbonate aqueous solution. Ketamine enantiomers were detected by mass spectrometry with multiple reaction monitoring mode using the transitions of m/z 238.3 → 125.9 for the analytes and m/z 237.1 → 194.1 for carbamazepine (internal standard). The method was linear over the concentration range from 0.5 to 500 ng/mL for each enantiomer. The lower limit of quantification (LLOQ) for each enantiomer was 0.5 ng/mL. The intra‐ and inter‐day precision was <7.3% and 8.5% for R‐ and S‐ketamine, respectively. The accuracy was 92.9–110.4% for R‐ketamine and 99.8–102.4% for S‐ketamine. The method was successfully applied to characterize the stereoselective pharmacokinetic profiles of ketamine in beagle dogs.  相似文献   

15.
《Tetrahedron: Asymmetry》1999,10(5):841-853
Valnoctamide (2-ethyl-3-methyl valeramide, Nirvanil®, VCD), a mild tranquilizer endowed with anticonvulsant properties, exhibits diastereoselective and enantioselective pharmacokinetics in healthy subjects and epileptic patients. The purpose of this paper is to assign the absolute configuration of the four VCD stereoisomers and to describe the stereoselective synthesis used to prepare two-key VCD stereoisomers. We have synthesized two out of the four stereoisomers, with high diastereomeric excess, by two different synthetic methods. In both methods the (S) configuration at C-3 of VCD was fixed by synthesizing (S)-3-methyl valeric acid from l-isoleucine. In the first method the diastereomeric mixture (2RS,3S)-VCD was prepared. This mixture gave one of the diastereomers via repeated crystallizations, and its absolute configuration (2R,3S)-VCD, was established by X-ray crystallography using a single crystal. The absolute configuration of all four VCD stereoisomers, separated by chiral gas chromatography, was established on the basis of diastereomeric and enantiomeric correlations. In order to assess stereoselective pharmacodynamic properties of VCD, the single stereoisomers have to be synthesized. Stereoselective synthesis of (2R,3S)-VCD and (2S,3S)-VCD was accomplished by using chiral oxazolidinone auxiliaries. These diastereomers were obtained in 99.6% diastereomeric excess.  相似文献   

16.
Vernonia cinerea Less. (ash-coloured fleabane; Asteraceae) is a widely distributed plant throughout India. The plant has reputation as folklore medicine in various traditional systems of medicine. The plant has been evaluated for varied pharmacological activities to validate its traditional claims, and has been scientifically reported to possess anti-inflammatory, antidiabetic, renoprotective, anticancer, antiviral, antimicrobial activities, etc. This review emphasises on ethnopharmacology and pharmacology of V. cinerea.  相似文献   

17.
Venlafaxine (VFX) is a serotonin and norepinephrine reuptake inhibitor chiral drug used in therapy as an antidepressant in the form of a racemate consisting of R‐ and S‐VFX. The two enantiomers of VFX exhibit different pharmacological activities: R‐VFX inhibits both norepinephrine and serotonin synaptic reuptake, whereas S‐VFX inhibits only the serotonin one. R‐ and S‐VFX are metabolized in the liver to the respective R‐ and SO‐desmethylvenlafaxine (ODVFX), R‐ and SN‐desmethylvenlafaxine (NDVFX), and R‐ and SN,O‐didesmethylvenlafaxine (NODVFX). The pharmacological profile of ODVFX is close to that of VFX, whereas the other two chiral metabolites (NDVFX and NODVFX) have lower affinity for the receptor sites. The pharmacokinetics of the VFX enantiomers appear stereoselective, including the metabolism process. In the past 20 years, several studies describing the enantioselective analysis of R‐ and S‐VFX in pharmaceutical formulations and its chiral metabolites in biological matrices were published. These methods encompass liquid chromatography coupled with UV detection, mass spectrometry, or tandem mass spectrometry, and capillary electrophoresis. This paper reviews the published methods used for the determination of the individual enantiomers of VFX and its chiral metabolites in different matrices.  相似文献   

18.
《Tetrahedron: Asymmetry》2014,25(16-17):1221-1233
The stereoselective synthesis of the spiroindoline phytoalexin (R)-(+)-1-methoxyspirobrassinin and its unnatural (S)-(−)-enantiomer were achieved by the bromine-induced spirocyclization of 1-methoxybrassinin using chiral auxiliaries (+)- and (−)-menthol, followed by oxidation of the obtained menthyl ethers. The TFA-catalyzed methanolysis of chiral 1-methoxyspirobrassinol menthyl ethers provided (2R,3R)-(−)-1-methoxyspirobrassinol methyl ether and its other three unnatural stereoisomers. The enantiomers of the 2-amino analogues of the indole phytoalexin (2R,3R)-(−)-1-methoxyspirobrassinol methyl ether were prepared by the TFA-catalyzed replacement of the chiral alkoxy group with an amine. The synthesized compounds were tested in vitro on cancer cell lines and examined with enantiopure 2-amino analogues of the indole phytoalexin (2R,3R)-(−)-1-methoxyspirobrassinol methyl ether, which showed in most cases, lower activity than the corresponding racemates.  相似文献   

19.
Difenoconazole is a chemical entity containing two chiral centers and having four stereoisomers: (2R,4R)-, (2R,4S)-, (2S,4R)- and (2S,4S)-difenoconazole, the marketed product containing a mixture of these isomers. Residues of difenoconazole have been identified in many agricultural products and drinking water. A computational approach has been used to evaluate the toxicological effects of the difenoconazole stereoisomers on humans. It integrates predictions of absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles, prediction of metabolism sites, and assessment of the interactions of the difenoconazole stereoisomers with human cytochromes, nuclear receptors and plasma proteins by molecular docking. Several toxicological effects have been identified for all the difenoconazole stereoisomers: high plasma protein binding, inhibition of cytochromes, possible hepatotoxicity, neurotoxicity, mutagenicity, skin sensitization potential, moderate potential to produce endocrine disrupting effects. There were small differences in the predicted probabilities of producing various biological effects between the distinct stereoisomers of difenoconazole. Furthermore, there were significant differences between the interacting energies of the difenoconazole stereoisomers with plasma proteins and human cytochromes, the spectra of the hydrogen bonds and aromatic donor–acceptor interactions being quite distinct. Some distinguishing results have been obtained for the (2S,4S)-difenoconazole: it registered the highest value for clearance, exposed reasonable probabilities to produce cardiotoxicity and carcinogenicity and negatively affected numerous nuclear receptors.  相似文献   

20.
This contribution describes the chromatographic separation of peptide stereoisomers. Thereby, one focus is laid on the influence of the absolute configurations of peptide enantiomer pairs on their enantioselective separation. Three different N-terminal protecting groups and three different chiral stationary phases (CSPs) based on cinchona alkaloid derivatives were employed and oligoalanine di-, tri- and tetra-peptides were used as model set. The absolute configurations of the individual enantiomeric pairs were found to profoundly influence both the elution order and the enantioselectivity. The stereoselective molecular recognition mechanism was observed to be dependent on the combination of configuration and the chosen protecting group and CSP. As the CSPs on their own exhibited insufficient diastereoselectivity, a two-dimensional liquid chromatography-mass spectrometry (LC-MS) system was developed for the separation of both diastereomers and enantiomers of peptides in the second part of this study. Diastereomers were separated by reversed phase (RP) and the resulting enantiomeric pair fractions were transferred to a CSP for enantioseparation. All eight stereoisomers of a tripeptide (Ala-Ala-Ala) and 9 out of 10 stereoisomers of a tetrapeptide (Ala-Ala-Ala-Ala) could be successfully resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号