首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrogenerated silica thin films exhibiting a regular hexagonal packing of vertically‐aligned mesopore channels are promising for preconcentration electroanalysis. This work demonstrates the critical role of film thickness on their sensing performance using paraquat as a model analyte, based on mesoporous silica films prepared by electrochemically assisted self‐assembly performed for various deposition times. Films prepared with too short synthesis times (<10 s) led to deposits covering partially the electrode surface and suffered from rather poor sensing performance. Then, uniformly deposited films were obtained (between 10 and 15 s), and sensitivity rose up by increasing deposition times, whereas some limitations started to occur with much thicker films (>15 s deposition times) as a result of less electrochemically accessible paraquat accumulated far away from the electrode surface and restricted mass transport through the whole film thickness. These limitations were also confirmed on the basis of multi‐layered mesoporous silica films, suggesting a behavior that might be typical for other types of film‐modified electrodes.  相似文献   

2.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

3.
The suitability of mercury films on commercial screen‐printed electrodes for the analysis of heavy metal ions is critically tested for the particular case of Pb(II)‐ions. Although determination is possible by anodic stripping voltammetry with a reasonable detection limit (8.9 µg L?1), important drawbacks are noticed as a consequence of the heterogeneous deposition of mercury on the rough surface of screen‐printed devices.  相似文献   

4.
The use of a thin thiol‐functionalized silica film modified glassy carbon electrode in the determination of Hg(II) ions in a natural water sample is described. A typical measurement involves two successive steps: a glassy carbon electrode coated with a thin mesoporous silica film containing 10% of mercaptopropyl groups, according to the MPTMS/TEOS ratio in the starting sol‐gel, was first immersed into the accumulation medium for 15 min, then removed, and finally transferred into a detection solution containing KCl 1.0 mol L?1 where detection was performed by anodic stripping voltammetry. In this medium the previously accumulated Hg2+ species complexed by the thiol groups in an open circuit preconcentration step is then directly reduced at ?0.6 V during 60 s prior to be quantified by a differential pulse anodic scan from ?0.6 to 0.3 V (vs. Ag/AgCl). A stripping peak appeared at about ?0.01 V, which is directly proportional to the quantity of the analyte previously accumulated into the film. The best results were obtained under the following conditions: 100 mV pulse amplitude and 10 mV s?1 scan rate in 1.0 mol L?1 KCl solution pH 2.0. Using such parameters a linear dynamic range from 1.00 to 10.0×10?8 mol L?1 Hg(II) was observed with a limit of detection of 4.3 nmol L?1 for an accumulation time of 15 min. Hg(II) spiked in a natural water sample was determined between 97.0 and 101.4% mean recovery at 10?8 mol L?1 level. The results indicate that this electrode is sensitive and selective for the Hg(II)determination.  相似文献   

5.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

6.
Three‐dimensional porous platinum (Ptpor) films are prepared based on Pt electrodeposition on polyaniline (PANI) modified electrodes followed by selective dissolution of PANI with HNO3. Electrochemical quartz crystal microbalance data suggest that the PANI‐H2PtCl6 interaction involves redox and coordination reactions, depending on the working potential. The Ptpor shows better electrocatalytic performance than the Pt/PANI and conventionally electrodeposited Pt. The Ptpor modified glassy carbon electrode (GCE) can electrocatalyze the oxidation of H2O2 with a sensitivity of 414 µA cm?2 mM?1 and a detection limit of 9 nM, and the chitosan‐glucose oxidase/Ptpor/GCE can sense glucose with a sensitivity of 93.4 µA cm?2 mM?1.  相似文献   

7.
Sensitive and selective detection of Hg2+ in solution is a challenging work. An anodic stripping voltammetry with prestripping step at an in situ formed bismuth film modified glassy carbon electrode was proposed for detection of mercury(II) in solution. This prestripping step was able to decrease the background and improve the signal‐to‐noise ratio and thus enhance the sensitivity. With this method, highly sensitive and selective detection of Hg2+ with a ppt‐level detection limit of 0.5 ng L?1 could be achieved. Moreover, this method provides low interference, rapid and extreme simple and convenience, and hold great promise for in situ Hg2+ determination.  相似文献   

8.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

9.
N. W. Khun  E. Liu 《Electroanalysis》2009,21(23):2590-2596
Nitrogen doped diamond‐like carbon thin films with or without platinum and ruthenium incorporation (N‐DLC or PtRuN‐DLC) were deposited on highly conductive p‐Si substrates by DC magnetron sputtering to study the effect of Pt and Ru doping on the voltammetric performance of the N‐DLC films. The potential windows of these film electrodes were measured in different electrolytic solutions, such as H2SO4, HCl and KCl. The cyclic voltammograms obtained from the N‐DLC film electrodes in these solutions showed wide potential windows while the introduction of Pt and Ru into the film electrodes apparently narrowed down the potential windows due to their catalytic activities.  相似文献   

10.
11.
《Electroanalysis》2006,18(15):1511-1522
Three different types of myoglobin (Mb) layer‐by‐layer films were assembled respectively with TiO2 sol‐gel by vapor‐surface deposition, TiO2 nanoparticles, and poly(styrenesulfonate), designated as {SG‐TiO2/Mb}n, {NP‐TiO2/Mb}n, and {PSS/Mb}n. The permeability of the films was studied and compared by rotating disk voltammetry (RDV) and electrochemical impedance spectroscopy (EIS) with different electroactive probes, showing a general permeability sequence of {SG‐TiO2/Mb}n>{NP‐TiO2/Mb}n>{PSS/Mb}n. The electrochemical and electrocatalytic activity of Mb in these films were also investigated and compared by cyclic voltammetry (CV), RDV, and amperometry, indicating that among the three Mb films, {SG‐TiO2/Mb}n films demonstrated the highest maximum surface concentration of electroactive Mb and the best electrocatalytic performances toward reduction of H2O2. All these advantages could be attributed to the unique architecture and porous structure of {SG‐TiO2/Mb}n films, which could greatly facilitate the mass transport of small counterions and catalytic substrates within the films. The various influencing factors on the permeability, electrochemistry, and electrocatalysis of the Mb films were also investigated in detail.  相似文献   

12.
Anodic stripping voltammetry combined with sequential injection analysis (ASV‐SIA) was selected to examine the use of bismuth‐ and antimony‐film plated glassy carbon electrodes under comparable conditions for the determination of Pb(II) and Cd(II) ions. Of interest were the conditions for film deposition, as well as the composition of sample/carrier solutions, including concentrations of Sb(III) or Bi(III) and HCl. Then, by the optimized procedure, one could determine Pb(II), Cd(II), and Zn(II) ions at the low µg L?1 level and ASV‐SIA configuration with both electrodes tested on analysis of a water sample.  相似文献   

13.
《Electroanalysis》2005,17(20):1835-1840
An L ‐cysteine modified gold electrode for the determination of copper in the presence of various amounts of arsenic with anodic stripping voltammetry has been studied. The electrode was fabricated by immersing a gold electrode in an ethanol solution of 5mM L ‐cysteine for 60 min. Various parameters, such as the effect of different supporting electrolytes, the pH of the electrolyte and the deposition potential were investigated. Under optimum conditions, copper was accumulated at ?0.3 V (vs. SEC) for 60 s in 0.1 M phosphate buffer pH 5.0 in the presence of different amounts of arsenic. Essentially the same sensitivities (0.33±0.001 μA/μM) and limits of detection (0.13±0.002 μM) of copper were obtained with various amount of arsenic in the range 2 μM to 20 μM.  相似文献   

14.
《Electroanalysis》2006,18(12):1179-1185
The electrochemical behavior of human breast cancer cells (MCF‐7) suspension on multiwalled carbon nanotube (MWCNT) modified graphite electrode was studied by using cyclic voltammetry (CV) and potentiometric stripping analysis (PSA). Compared with bare graphite electrode, the MWCNTs‐modified electrode showed electrocatalytic property to the oxidation of electroactive species in the cell suspension. One oxidative peak at about +0.74 V was observed in the cyclic voltammogram. PSA was proved to be more sensitive than CV for investigation of the electrochemical behavior of cells. And it was found that ultrasonication treatment of the cell suspension can significantly enhance the PSA signal. Factors influencing the PSA signal of cells, including deposition time, deposition potential and stripping current, were investigated in detail and the optimum conditions were obtained. The baseline corrected PSA signal was found to be related to the viability of cells and the technique was used for monitoring the growth of MCF‐7 cells. The effect of anticancer drug 5‐fluorouracil (5‐FU) on the growth of MCF‐7 cells was also investigated by PSA.  相似文献   

15.
A naphthalenediimide (NDI)‐based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge‐transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron‐donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies.  相似文献   

16.
17.
The self‐assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self‐assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long‐range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long‐range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  相似文献   


18.
《中国化学会会志》2017,64(10):1220-1226
Surfactant‐like peptides (SLPs ) can self‐assemble into various nanostructures, which have shown great potential for a variety of biomedical and biotechnological applications. In this work, two SLPs , V4Y , and V4AGY , were designed and synthesized, both of which had hydrophobic head valines (V) with large side‐chain steric hindrance effect and the hydrophilic head tyrosine (Y) with a rigid ring and two negative charges in the basic solution. Fourier transform infrared and circular dichroism studies confirmed their different secondary structures, whereas atomic force microscopy and dynamic light scattering characterized the difference in their morphologies. In solution, they formed different secondary structures. Correspondingly, V4Y and V4AGY formed noncompact spherical aggregates and a spiral clubbed structure, respectively. In V4AGY , the introduction of alanine (A) and glycine (G) increased the molecule's flexibility and increased the distance between the tyrosine and four continuous valines, so as to weaken the synergistic action of electronic repulsion and steric hindrance and strengthen the intermolecular hydrogen bond beneficial to β‐sheet formation and the axial growth of the self‐assembly. Therefore, the flexibility of the molecule and the side‐chain steric effect of the two heads of SLPs are non‐negligible in the tuning process of peptide self‐assembly, in addition to hydrogen‐bonding, hydrophobic, and electrostatic interactions.  相似文献   

19.
Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by CnF2n+1CmH2m+1 (FnHm) diblocks spontaneously self‐assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the “collapse” of their monolayers at ~30 Å2. For molecular areas A between 30 and 10 Å2, a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 Å2, surface pressure increases again, reaching up to ~48 mN m?1 before the film eventually collapses. Brewster angle microscopy and AFM indicate a several‐fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression–expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline‐like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure‐driven transformations of films of self‐assembled objects are thus provided. These observations further illustrate the powerful self‐assembling capacity of perfluoroalkyl chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号