首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zirconyl chloride (ZrOCl2) catalyzes efficiently the one‐pot three component reactions of aldehydes, amines, and allyltributylstannane at room temperature to furnish the corresponding homoallylic amines in short reaction times and in excellent yields.  相似文献   

3.
A one‐pot synthesis of 2‐(4‐oxo‐1,3‐thiazinan‐5‐yl)acetic acids is described via a three‐component reaction between primary alkylamines and ithaconic anhydride and phenyl isothiocyanate or benzoyl isothiocyanate.  相似文献   

4.
The one‐pot multicomponent coupling of an aromatic aldehyde, an enolizable ketone or keto ester, acetonitrile, and acetyl chloride at room temperature in the presence of Amberlyst‐15 as catalyst affords β‐acetamido ketones in high yields. The inexpensive catalyst works under heterogeneous conditions and can be readily reused.  相似文献   

5.
An efficient solvent‐free method for the synthesis of various 3,4‐dihydropyrimidin‐2(1H)‐ones using TiO2 as a recyclable heterogeneous catalyst is described. Compared to known methods, satisfactory results are obtained with excellent yields, short reaction times, and simplicity in the experimental procedure.  相似文献   

6.
An efficient one‐pot four‐component protocol for the synthesis of imidazo[1,2‐a]pyridines was developed by condensing ethane‐1,2‐diamine ( 2 ), 1,1‐bis(methylthio)‐2‐nitroethene ( 1 ), aldehydes 3 , and activated methylene compounds in EtOH under reflux conditions (Tables 1–3). The features of this procedure are operational simplicity, good yields of products, in situ preparation of heterocyclic ketene aminals (HKA), and catalyst‐free conditions.  相似文献   

7.
The zwitterion, formed from the reaction of an alkyl isocyanide and a dialkyl acetylenedicarboxylate, reacts with phenacyl halides in H2O to produce γ‐iminolactone derivatives in high yields. H2O helps to avoid the use of highly toxic and environmentally unfavorable solvents for this conversion.  相似文献   

8.
Phosphomolybdic acid (PMA)–SiO2 was found to be an efficient catalyst for the three‐component condensation reaction of phthalhydrazide, 1,3‐diketone, and aldehydes to produce 2H‐indazolo[1,2‐b]phthalazine‐triones in excellent yields. The catalyst can be recovered and reused without significant loss of activity.  相似文献   

9.
A simple synthesis of N2‐alkyl‐N3‐[2‐(1,3,4‐oxadiazol‐2‐yl)aryl]benzofuran‐2,3‐diamines 5 via a one‐pot four‐component reaction is described (Scheme 1). A mixture of N‐(isocyanoimino)triphenylphosphorane ( 1 ), a 2‐aminobenzoic acid 2 , a 2‐hydroxybenzaldehyde 3 , and an isocyanide 4 in absolute EtOH at room temperature undergoes a smooth reaction to afford 5 in excellent yields (Table).  相似文献   

10.
The zwitterionic 1 : 1 intermediates generated by addition of Ph3P to acetylenic esters is trapped by 1‐[(aryl)chloromethylene]‐2‐phenylhydrazines (=N‐phenylarenecarbohydrazonoyl chlorides) to yield functionalized 3‐aryl‐1‐phenyl‐1H‐pyrazoles in good yields.  相似文献   

11.
12.
Treatment of (aR)‐[1,1′binaphthalene]‐8,8′‐diol ((−)‐ 1 ) with hexamethylphosphorous triamide afforded the N,N‐dimethylphosphoramidite (−)‐ 3 (Scheme 1). The synthesis of the analogous N,N‐diisopropylphosphoramidite 4 failed, however, and afforded the acyclic phosphonamidate (−)‐ 5 . The application of the cyclic phosphoramidite (−)‐ 3 towards asymmetric catalysis was investigated. The borane reduction of acetophenone ( 6 ) to (R)‐1‐phenylethanol ( 7 ) in the presence of (−)‐ 3 proceeded with 96% ee (Scheme 2). The use of (−)‐ 3 as ligand in several Cu‐catalyzed addition and substitution reactions resulted in enantioselectivities ranging from 0 to 50% (Schemes 3 and 4).  相似文献   

13.
An efficient and rapid, solvent‐free, microwave‐accelerated, one‐pot, three‐component protocol for the synthesis of spirothiazolidin‐4‐ones from organic azides is reported for the first time via Staudinger/aza‐Wittig coupling/cyclization. The solvent‐free approach overcomes the limitations associated with the prevailing solution‐phase methodologies in the case of amines. In particular, its novelty is that it eradicates the vital limitation, i.e., the accumulation of H2O (by‐product), which is known to affect the yield and rate of the reaction, thus affording the spirothiazolidin‐4‐ones in short reaction times in excellent yields.  相似文献   

14.
A one‐pot O‐phosphinative Passerini/Pudovik reaction has been developed, based on reacting aldehydes, isocyanides, and phosphinic acids followed by the addition of second aldehydes to form the corresponding α‐(phosphinyloxy)amide derivatives. This is the first reported instance of a Passerini‐type, isocyanide‐based multicomponent reaction using a phosphinic acid instead of a carboxylic acid. The nucleophilicity of the phosphinate group allows a subsequent catalytic Pudovik‐type reaction, affording the highly functionalized α‐(phosphinyloxy)amide derivative in high yield. A wide range of aldehydes and isocyanides are applicable to this reaction.  相似文献   

15.
A new one‐pot, four‐component synthetic rout is reported for the preparation of functionalized N‐acyl‐2alkylimino‐2,3‐dihydrothiazole derivatives from the reaction between acid chlorides, ammonium thiocyanate, primary alkylamines, and ethyl bromopyruvate under mild, solvent‐ and catalyst‐free conditions at room temperature. This completely green and efficient straight forward procedure led to the desired products in good to high yields without any need to catalyst or solvent assistance and no by product was observed in all the reactions  相似文献   

16.
Monocarbonyl activation of 2,2‐disubstituted malonic acids with benzotriazole leads to decarboxylation of one of the carboxy groups and formation of a C?H bond. Intermediate carbonyl benzotriazoles then readily acylate nucleophilic reagents and peptides resulting in libraries of conjugates and peptidomimetics.  相似文献   

17.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

18.
By a one‐pot tandem Ugi multicomponent reaction (MCR)/click reaction sequence not requiring protecting groups, 1H‐1,2,3‐triazole‐modified Ugi‐reaction products 6a – 6n (Scheme 1 and Table 2), 7a – 7b (Table 4), and 8 (Scheme 2) were synthesized successfully. i.e., terminal, side‐chain, or both side‐chain and terminal triazole‐modified Ugi‐reaction products as potential amino acid units for peptide syntheses. Different catalyst systems for the click reaction were examined to find the optimal reaction conditions (Table 1, Scheme 1). Finally, an efficient Ugi MCR+Ugi MCR/click reaction strategy was elaborated in which two Ugi‐reaction products were coupled by a click reaction, thus incorporating the triazole fragment into the center of peptidomimetics (Scheme 3). Thus, the Ugi MCR/click reaction sequence is a convenient and simple approach to different 1H‐1,2,3‐triazole‐modified amino acid derivatives and peptidomimetics.  相似文献   

19.
An effective route to functionalized 2H‐chromene (=2H‐1‐benzopyran) derivatives 4 is described (Scheme 1). This involves the reaction of a 1,1‐diactivated alkene, resulting from the reaction of dimedone (=5,5‐dimethylcyclohexane‐1,3‐dione; 1a ) with methyl chloroglyoxylate (ClC(O)COOMe), benzyl carbonochloridate (ClC(O)OCH2Ph) or 3,5‐dinitrobenzoyl chloride (3,5‐(NO2)2C6H3C(O)Cl), and a dialkyl acetylenedicarboxylate (=dialkyl but‐2‐ynedioate) in the presence of Ph3P which undergo intramolecular Wittig reaction to produce 2H‐chromene derivatives (Scheme 1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号