首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
In this article, we show that the long‐range‐corrected (LC) density functionals LC‐BOP and LCgau‐BOP reproduce frontier orbital energies and highest‐occupied molecular orbital (HOMO)—lowest‐unoccupied molecular orbital (LUMO) gaps better than other density functionals. The negative of HOMO and LUMO energies are compared with the vertical ionization potentials (IPs) and electron affinities, respectively, using CCSD(T)/6‐311++G(3df,3pd) for 113 molecules, and we found LC functionals to satisfy Koopmans' theorem. We also report that the frontier orbital energies and the HOMO‐LUMO gaps of LC‐BOP and LCgau‐BOP are better than those of recently proposed ωM05‐D (Lin et al., J. Chem. Phys. 2012, 136 , 154109). We express the exact IP in terms of orbital relaxation, and correlation energies and hence calculate the relaxation and correlation energies for the same set of molecules. It is found that the LC functionals, in general, includes more relaxation effect than Hartree–Fock and more correlation effect than the other density functionals without LC scheme. Finally, we scan μ parameter in LC scheme from 0.1 to 0.6 bohr?1 for the above test set molecules with LC‐BOP functional and found our parameter value, 0.47 bohr?1, is usefully applicable to our tested systems. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The R? CH2? HO…H? X (R = SCl, Cl, SH, NO2, OMe, CHO, CN, C2H5, CH3, H; X = F, Cl, Br) complexes are considered here as the interest sample for the consideration of different measures of H‐bond strength. The intermolecular interaction energies are predicted by using MP2/6‐31++G(d,p) and B3LYP/6‐31++G(d,p) methods with basis set superposition error and zero‐point energy corrections. The results showed that intermolecular hydrogen bonds for complexes with HF are stronger than such interactions in complexes with HCl and HBr. Quantum theory of “Atoms in Molecules” and natural bond orbitals method were applied to analyzed H‐bond interactions. The gas phase thermodynamic properties of complexes were predicted using quantum mechanical computations. The obtained results showed a strong influence of the R and X substituents on the thermodynamic properties of complexes. Numerous correlations between topological, geometrical, thermodynamic properties and energetic parameters were also found. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Basis set effects on the DSD‐PBEP86‐NL and DOD‐PBEP86‐NL functionals for noncovalent interactions have been extensively studied in this work. The cc‐pVXZ (X = D, T, Q, 5, 6) and augmented aug‐cc‐pVXZ (X = D, T, Q) basis sets are systematically tested without counterpoise (CP) corrections against the well‐known S66 database. Additionally, the basis sets of def2‐TZVPP and def2‐TZVPPD are also examined. Based on our computations, the performances of the aug‐cc‐pVQZ, cc‐pV5Z, and cc‐pV6Z basis sets are very approximate to those obtained with the def2‐QZVP basis set for both the DSD‐PBEP86‐NL and DOD‐PBEP86‐NL functionals. Note that the short‐range attenuation parameters for these two functionals were directly optimized using the def2‐QZVP basis set without CP corrections against the S66 database. Generally speaking, the cc‐pVXZ (X = D, T, Q), aug‐cc‐pVXZ (X = D, T, Q), def2‐TZVPP, and def2‐TZVPPD basis sets favor half CP correction for these two functionals. Nevertheless, the aug‐cc‐pVQZ basis set already performs well without any CP correction, especially for the DOD‐PBEP86‐NL functional. With respect to accuracy and computational cost, the cc‐pVTZ and def2‐TZVPP basis sets with half CP corrections are recommended for these two functionals to evaluate interaction energies of large noncovalent complexes.  相似文献   

4.
By counterpoise‐corrected optimization method, the interactions of BrCl with the first‐row hydrides (HF, H2O, NH3) have been investigated at the MP2/6–311++G(3d,3p) level. To understand that the X? Br‐type (X = F, O, N) structure is more stable than the corresponding hydrogen‐bonded structure in these complexes, the electronic properties were also investigated. Symmetry‐adapted perturbation theory (SAPT) analysis has been carried out to understand the nature of the weak hydrogen bond and X? Br‐type interactions. On the other hand, for the weak hydrogen‐bonded complexes and the X? Br‐type complexes charges transfer is well correlated with the total induction energies. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
We applied an improved long‐range correction scheme including a short‐range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau‐B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long‐range portion of Hartree‐Fock (HF) exchange to excitation energies of large molecules (Chai and Head‐Gordon, J Chem Phys 2008, 128, 084106) and additional short‐range Gaussian parameters (a = 0.15 and k = 0.9) that controls HF exchange inclusion ranging from short‐range to mid‐range (0.5–3 Å) to ground state properties achieved high performances of LCgau‐B97 simultaneously on both ground state and excited state properties, which is better than other tested semiempirical density functional theory (DFT) functionals, such as ωB97, ωB97X, BMK, and M0x‐family. We also found that while a small μ value (~0.2) in LC‐DFT is appropriate to the local excitation and intramolecular charge‐transfer excitation energies, a larger μ value (0.42) is desirable in the Rydberg excitation‐energy calculations. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

6.
An N‐heterocyclic carbene substituted by two expanded 9‐ethyl‐9‐fluorenyl groups was shown to bind an AuCl unit in an unusual manner, namely with the Au?X rod sitting out of the plane defined by the heterocyclic carbene unit. As shown by X‐ray studies and DFT calculations, the observed large pitch angle (21°) arises from an easy displacement of the gold(I) atom away from the carbene lone‐pair axis, combined with the stabilisation provided by weak CH???Au interactions involving aliphatic and aromatic H atoms of the NHC wingtips. Weak, intermolecular Cl???H bonds are likely to cooperate with the H???Au interactions to stabilise the out‐of‐plane conformation. A general belief until now was that tilt angles in NHC complexes arise mainly from steric effects within the first coordination sphere.  相似文献   

7.
A single‐chain magnet (SCM) was constructed from manganese(III) 5,10,15‐tris(pentafluorophenyl)corrole complex [MnIII(tpfc)] through supramolecular π–π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π–π interaction or weak Mn ??? O interaction to form a supramolecular one‐dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out‐of‐phase alternating‐current magnetic susceptibility below 2 K and a magnetization hysteresis loop with a coercive field of 400 Oe at 0.5 K. It is the first example of spin‐canted supramolecular single‐chain magnet due to weak π–π stacking interaction. By fitting the susceptibility data χMT (20–300 K) of 1 with the spin Hamiltonian expression ${\overrightarrow{H}}A single-chain magnet (SCM) was constructed from manganese(III) 5,10,15-tris(pentafluorophenyl)corrole complex [Mn(III) (tpfc)] through supramolecular π-π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π-π interaction or weak Mn???O interaction to form a supramolecular one-dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out-of-phase alternating-current magnetic susceptibility below 2?K and a magnetization hysteresis loop with a coercive field of 400?Oe at 0.5?K. It is the first example of spin-canted supramolecular single-chain magnet due to weak π-π stacking interaction. By fitting the susceptibility data χ(M) T (20-300?K) of 1 with the spin Hamiltonian expression H = -2J Σ(i=1)(n-1) S(Ai) S(Ai+1) + D Σ(i) S((iZ)(2)), the intrachain magnetic coupling parameter transmitted by π-π interaction of -0.31?cm(-1) and zero field splitting parameter D of -2.59?cm(-1) are obtained. Ethyl acetate solvate 2 behaves as an antiferromagnetic chain without ordering or slow magnetic relaxation down to 0.5?K. The magnetic susceptibility data χ(M) T (20-300?K) of 2 was fitted by assuming the spin Hamiltonian H = -2JΣ(i=1)(n-1) S(Ai) S(Ai+1), and the intrachain antiferromagnetic coupling constant of -0.07?cm(-1) is much weaker than that of 1. Ethanol solvate 3 with a dimer motif shows field-induced single-molecule magnet like behavior below 2.5?K. The exchange coupling constant J within the dimer propagated by π-π interaction is -0.14?cm(-1) by fitting the susceptibility data χ(M) T (20-300?K) with the spin Hamiltonian H = -2J S(A) S(B) + β(S((A)g(A)) + S((B)g(B)))H. The present studies open a new way to construct SCMs from anisotropic magnetic single-ion units through weak intermolecular interactions in the absence of bridging ligands.  相似文献   

8.
A novel aza‐aromatic base adduct of cadmium(II) thenoyltrifluoroacetonate, [Cd(phen)(ttfa)2] ( 1 ), (phen = 1, 10‐phenanthroline; ttfa = thenoyltrifluoroacetonate) was synthesized and characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopy, thermal analysis as well as X‐ray crystallography. The single‐crystal structure of this complex shows that the coordination number of the Cd2+ ions are six with two nitrogen donor atoms from aza‐aromatic base ligands and four oxygen donors from two thenoyltrifluoroacetonate ligands. The supramolecular features in these complexes are directed by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are in agreement with the crystal structure. The CdO nanoparticles were obtained by thermolysis of 1 at 180 °C with oleic acid as a surfactant. The average size of the nanoparticles was estimated by the Scherrer equation with the diameter about 45 nm. The morphology and size of the prepared CdO samples were further observed using SEM.  相似文献   

9.
Positive cooperativity achieved through activating weak non‐covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO‐based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion‐pairing interactions. The X‐ray single‐crystal structure revealed that the strong positive cooperativity likely originates from eight C?H???O hydrogen bonds between the two head‐to‐head‐arranged syn tube molecules. These relatively weak hydrogen bonds were not observed in the free hosts and only emerged in the complex. Furthermore, this complex was used as a basic motif to construct a robust [2+2] cyclic assembly, thus demonstrating its potential in molecular self‐assembly.  相似文献   

10.
In this study, 12 bound complexes were selected to construct a database for testing 15 dispersion‐improved exchange‐correlation (XC) functionals, including hybrid generalized gradient approximation (GGA), modified using the Grimme's pairwise strategy, and double hybrid XC functionals, for specifically characterizing the CO2 binding by alcoholamines. Bound complexes were selected based on the characteristics of their hydrogen bonds, dispersion, and electrostatic (particularly between the positive charge of CO2 and the lone pair of N of alcoholamines) interactions. The extrapolated binding energy from the aug‐cc‐pVTZ (ATZ) to aug‐cc‐pVQZ (AQZ) basis set at the CCSD(T)/CBS(MP2+DZ) level was used as the reference for the XC functional comparison. M06‐2X produced the optimal agreement if the optimized geometries at MP2/ATZ level were chosen for all the test bound complexes. However, M06‐L, ωB97X, and ωB97, and were preferred if the corresponding density functional theory (DFT) optimized geometries were adapted for the benchmark. Simple bimolecular reaction between CO2 and monoethanolamine simulated using polarizable continuum solvation model confirmed that ωB97, ωB97X, and ωB97XD qualitatively reproduced the energetics of MP2 level. The inconsistent performance of the tested XC functionals, observed when using MP2 or DFT optimized geometries, raised concerns regarding using the single‐point ab initio correction combined with DFT optimized geometry, particularly for determining the nucleophilic attack by alcoholamines to CO2. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

12.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

13.
4′‐Methylazobenzene‐2‐sulfenyl thio‐cyanate (MABS‐SCN) was synthesized in an aqueous medium and characterized by 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and elemental analysis. The crystal structure was confirmed by single crystal X‐ray diffraction and its geometry was optimized in ground state by Hartree–Fock model and (B3LYP) density functional theory, and in solution (ethanol) using polarized continuum model at restricted HF using the basis set 6–31+G*. The compound crystallizes in orthorhombic space group Pbca, with unit cell parameters a = 7.165 (7) Å, b = 18.846 (2) Å, c = 20.379 (2) Å, V = 2752.1 (5) Å3, and Z = 8. It attains a planar thiadiazolium salt structure due to strong ortho azo–sulfur interaction imparting exceptional thermal stability, nonreactive solubility in aqueous medium, and high melting crystalline solid nature. A weak intramolecular C H…S type interaction, one C H…S type, four C H…N type intermolecular hydrogen bonds, and van der Waal's interactions are believed to be the stabilizing force for the crystal structure. MABS‐SCN was also tested for antimicrobial activity.  相似文献   

14.
We have optimized the geometry and calculated interaction energies for over 100 different complexes of CO(2) with various combinations of electron accepting (Lewis acid) and electron donating (Lewis base) molecules. We have used the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)-F12] methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. We observe only modest changes in the geometric parameters of CO(2) upon complexation, which suggests that the geometry of CO(2) adsorbed in a nanoporous material should be similar to that of CO(2) in gas phase. When CO(2) forms a complex with two Lewis acids via the two electron rich terminal oxygen atoms, the interaction energy is less than twice what would be expected for the same complex involving a single Lewis acid. We consider a series of complexes that exhibit simultaneous CO(2)-Lewis acid and CO(2)-Lewis base intermolecular interactions, with total interaction energies spanning 14.1-105.9 kJ mol(-1). For these cooperative complexes, we find that the total interaction energy is greater than the sum of the interaction energies of the constituent complexes. Furthermore, the intermolecular distances of the cooperative complexes are contracted as compared to the constituent complexes. We suggest that metal-organic-framework or similar nanoporous materials could be designed with adsorption sites specifically tailored for CO(2) to allow cooperative intermolecular interactions, facilitating enhanced CO(2) adsorption.  相似文献   

15.
The effect of intermolecular hydrogen bonding on the photophysical properties of N‐methyl‐1,8‐naphthalimide ( 2 ) has been investigated by time‐dependent density functional theory (TD‐DFT) method. The UV and IR spectra of 2 monomer and its hydrogen‐bonded complexes formed with 2,2,2‐trifluoroethanol (TFE) 2 +TFE and 2 +2TFE have been calculated, which confirm the presence of intermolecular hydrogen bonding interactions between the carbonyl groups of the aromatic imide and the hydroxyl group of the polyfluorinated alcohol. The absorption and fluorescence intensities going from 2 monomer via hydrogen‐bonded complex 2 +TFE to 2 +2TFE were found to be gradually enhanced with the wavelength gradually red‐shifted. The enhancements of the fluorescence intensities from 2 monomer to hydrogen‐bonded complexes 2 +TFE and 2 +2TFE were attributed to the decrease of the intersystem crossing (ISC) efficiency from the first excited singlet state S1 1(ππ*) to the second excited triplet state T2 3(nπ*), whose energy was increased relative to its ground state due to the intermolecular hydrogen bonding interactions.  相似文献   

16.
Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C?X???X?C/C?X???π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l ‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.  相似文献   

17.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

18.
Air‐ and moisture‐stable coordination compounds of late first row transition metals, i.e. Co(III), Ni(II), Cu(II) and Zn(II), derived from the ligand (E)‐4‐(4‐chlorophenyl)‐1‐(1‐hydroxypropan‐2‐ylidene)thiosemicarbazide were prepared and successfully characterized using various spectro‐analytical techniques. The molecular structures of the ligand LH and complexes C1 and C2 were determined using single‐crystal X‐ray diffraction. The complexes C1 and C2 are stabilized by weak intermolecular CH???π stacking interactions: C1 between phenyl rings (C2–H21???C2) with a contact distance of 2.855 Å and C2 between phenyl ring and thione sulfur (C13???S1) with a contact distance of 3.366(6) Å. Complex C3 is found to be electrochemically active in the working potential range, showing a quasi‐reversible redox process. The interactions of all the compounds with calf thymus DNA were comprehensively investigated using electronic absorption spectroscopy, viscosity and thermal denaturation studies. Cleavage studies of Escherichia coli DNA were monitored using agarose gel electrophoresis. The results show that LH and complex C4 bind to calf thymus DNA through partial intercalation, while remaining complexes bind electrostatically. Further, C1, C2 and C4 complexes show better cleavage potential towards E. coli DNA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.  相似文献   

20.
Single‐crystal X‐ray diffraction of a series of ten crystalline silver(I)–trifluoroacetate complexes that contained designed ligands, each of which was composed of an aromatic system that was functionalized with terminal and internal ethynyl groups and a vinyl substituent, provided detailed information on the influence of ligand disposition and orientation, coordination preferences, and the co‐existence of different types of silver(I)–carbon bonding interactions (silver–ethynide, silver–ethynyl, silver–ethenyl, and silver–aromatic) on the construction of coordination networks that were consolidated by argentophilic and weak inter/intramolecular interactions. The complex Ag L10? 6 AgCF3CO2 ? H2O ? MeOH ( HL10 =1‐{[4‐(prop‐2‐ynyloxy)‐3‐vinylphenyl]ethynyl}naphthalene) is the first reported example that exhibits all four kinds of silver(I)–carbon bonding interactions in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号