首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A parallel stabilized finite‐element/spectral formulation is presented for incompressible large‐eddy simulation with complex 2‐D geometries. A unique discretization scheme is developed consisting of a streamline‐upwind Petrov–Galerkin/Pressure‐Stabilized Petrov–Galerkin (SUPG/PSPG) finite‐element discretization in the 2‐D plane with a collocated spectral/pseudospectral discretization in the out‐of‐plane direction. This formulation provides an efficient approach for solving 3‐D flows over arbitrary 2‐D geometries. Utilizing this discretization and through explicit temporal treatment of the non‐linear terms, the system of equations for each Fourier mode is decoupled within each time step. A novel parallelization approach is then taken, where the computational work is partitioned in Fourier space. A validation of the algorithm is presented via comparison of results for flow past a circular cylinder with published values for Re=195, 300, and 3900. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In the present paper, a numerical method for the computation of time‐harmonic flows, using the time‐linearized compressible Reynolds‐averaged Navier–Stokes equations is developed and validated. The method is based on the linearization of the discretized nonlinear equations. The convective fluxes are discretized using an O(Δx) MUSCL scheme with van Leer flux‐vector‐splitting. Unsteady perturbations of the turbulent stresses are linearized using a frozen‐turbulence‐Reynolds‐number hypothesis, to approximate eddy‐viscosity perturbations. The resulting linear system is solved using a pseudo‐time‐marching implicit ADI‐AF (alternating‐directions‐implicit approximate‐factorization) procedure with local pseudo‐time‐steps, corresponding to a matrix‐successive‐underrelaxation procedure. The stability issues associated with the pseudo‐time‐marching solution of the time‐linearized Navier–Stokes equations are discussed. Comparison of computations with measurements and with time‐nonlinear computations for 3‐D shock‐wave oscillation in a square duct, for various back‐pressure fluctuation frequencies (180, 80, 20 and 10 Hz), assesses the shock‐capturing capability of the time‐linearized scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we consider an augmented velocity–pressure–stress formulation of the 2D Stokes problem, in which the stress is defined in terms of the vorticity and the pressure, and then we introduce and analyze stable mixed finite element methods to solve the associated Galerkin scheme. In this way, we further extend similar procedures applied recently to linear elasticity and to other mixed formulations for incompressible fluid flows. Indeed, our approach is based on the introduction of the Galerkin least‐squares‐type terms arising from the corresponding constitutive and equilibrium equations, and from the Dirichlet boundary condition for the velocity, all of them multiplied by stabilization parameters. Then, we show that these parameters can be suitably chosen so that the resulting operator equation induces a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well posed for any choice of finite element subspaces. In particular, we can use continuous piecewise linear velocities, piecewise constant pressures, and rotated Raviart–Thomas elements for the stresses. Next, we derive reliable and efficient residual‐based a posteriori error estimators for the augmented mixed finite element schemes. In addition, several numerical experiments illustrating the performance of the augmented mixed finite element methods, confirming the properties of the a posteriori estimators, and showing the behavior of the associated adaptive algorithms are reported. The present work should be considered as a first step aiming finally to derive augmented mixed finite element methods for vorticity‐based formulations of the 3D Stokes problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we present a stress‐based least‐squares finite‐element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward‐facing step problem is solved on several meshes. Results are compared with that obtained using vorticity‐based first‐order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
An Erratum has been published for this article in International Journal for Numerical Methods in Fluids 2005, 49(8): 933. We present a local‐analytic‐based discretization procedure for the numerical solution of viscous fluid flows governed by the incompressible Navier–Stokes equations. The general procedure consists of building local interpolants obtained from local analytic solutions of the linear multi‐dimensional advection–diffusion equation, prototypical of the linearized momentum equations. In view of the local analytic behaviour, the resulting computational stencil and coefficient values are functions of the local flow conditions. The velocity–pressure coupling is achieved by a discrete projection method. Numerical examples in the form of well‐established verification and validation benchmarks are presented to demonstrate the capabilities of the formulation. The discretization procedure is implemented alongside the ability to treat embedded and non‐matching grids with relative motion. Of interest are flows at high Reynolds number, ??(105)–??(107), for which the formulation is found to be robust. Applications include flow past a circular cylinder undergoing vortex‐induced vibrations (VIV) at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical solutions of 2D magneto‐hydrodynamic (MHD) equations by means of a fluctuation splitting (FS) scheme (with a new wave model and dual time stepping technique) is presented. The FS scheme, essentially based on the model explained in Proceedings of the Tenth International Conference, vol. 10, Swansea, 21–25 July 1997; Godunov Symposium, University of Michigan, Ann Arbor, 1–2 May 1997; Physics Symposium, Alanya, Turkey, 27–31 October 1998; J. Comput. Phys. 1999; 153 :437–466; Ph.D. Thesis, University of Marmara, Istanbul, Turkey, 2000), was extended to include gravitational source effects, limiters to limit oscillations, high order time accuracy through multistage Runge–Kutta steps, and a dual time stepping scheme to drive magnetic field divergence to zero during iterations. The numerical results show that with the new wave model called MHD‐B along with its embedded numerical dissipation, correct limiting viscosity solution has been recovered and that it can safely be used in order to investigate steady or time dependent magnetized or neutral compressible flows in two dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to appear) discretizations is employed for the analysis of BiGlobal fluid instability problems. Unlike other implementations of this type, which use a time‐stepping‐based formulation (J. Comput. Phys. 1994; 110 (1):82–102; J. Fluid Mech. 1996; 322 :215–241), a formulation is considered here in which the discretized matrix is constructed and stored prior to applying an iterative shift‐and‐invert Arnoldi algorithm for the solution of the generalized eigenvalue problem. In contrast to the time‐stepping‐based formulations, the matrix‐based approach permits searching anywhere in the eigenspace using shifting. Hybrid and fully unstructured meshes are used in conjunction with the spatial discretization. This permits analysis of flow instability on arbitrarily complex 2‐D geometries, homogeneous in the third spatial direction and allows both mesh (h)‐refinement as well as polynomial (p)‐refinement. A series of validation cases has been defined, using well‐known stability results in confined geometries. In addition new results are presented for ducts of curvilinear cross‐sections with rounded corners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We present a Lagrangian formulation for finite element analysis of quasi‐incompressible fluids that has excellent mass preservation features. The success of the formulation lays on a new residual‐based stabilized expression of the mass balance equation obtained using the finite calculus method. The governing equations are discretized with the FEM using simplicial elements with equal linear interpolation for the velocities and the pressure. The merits of the formulation in terms of reduced mass loss and overall accuracy are verified in the solution of 2D and 3D quasi‐incompressible free‐surface flow problems using the particle FEM ( www.cimne.com/pfem ). Examples include the sloshing of water in a tank, the collapse of one and two water columns in rectangular and prismatic tanks, and the falling of a water sphere into a cylindrical tank containing water. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A new regularization method is proposed for the Galerkin approximation of the incompressible Navier–Stokes equations with Q1/P0 element, by newly introducing a square‐type linear form into the variational divergence‐free constraint regularized with the global pressure jump (GPJ) method. The addition of the square‐type linear form is intended to eliminate the hydrostatic pressure mode appearing in confined flows, and to make the discretized matrix positive definite and then non‐singular without the pressure pegging trick. Effects of the free parameters for the regularization on the solutions are numerically examined with a 2‐D driven cavity flow problem. Furthermore, the convergences in the conjugate gradient iteration for the solution of the pressure Poisson equation are compared among the mixed method, the GPJ method and the present method for both leaky and non‐leaky 3‐D driven cavity flows. Finally, the non‐leaky 3‐D cavity flows at different Re numbers are solved to compare with the literature data and to demonstrate the accuracy of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we present a novel pressure-based semi-implicit finite volume solver for the equations of compressible ideal, viscous, and resistive magnetohydrodynamics (MHD). The new method is conservative for mass, momentum, and total energy, and in multiple space dimensions, it is constructed in such a way as to respect the divergence-free condition of the magnetic field exactly, also in the presence of resistive effects. This is possible via the use of multidimensional Riemann solvers on an appropriately staggered grid for the time evolution of the magnetic field and a double curl formulation of the resistive terms. The new semi-implicit method for the MHD equations proposed here discretizes the nonlinear convective terms as well as the time evolution of the magnetic field explicitly, whereas all terms related to the pressure in the momentum equation and the total energy equation are discretized implicitly, making again use of a properly staggered grid for pressure and velocity. Inserting the discrete momentum equation into the discrete energy equation then yields a mildly nonlinear symmetric and positive definite algebraic system for the pressure as the only unknown, which can be efficiently solved with the (nested) Newton method of Casulli et al. The pressure system becomes linear when the specific internal energy is a linear function of the pressure. The time step of the scheme is restricted by a CFL condition based only on the fluid velocity and the Alfvén wave speed and is not based on the speed of the magnetosonic waves. Being a semi-implicit pressure-based scheme, our new method is therefore particularly well suited for low Mach number flows and for the incompressible limit of the MHD equations, for which it is well known that explicit density-based Godunov-type finite volume solvers become increasingly inefficient and inaccurate because of the more and more stringent CFL condition and the wrong scaling of the numerical viscosity in the incompressible limit. We show a relevant MHD test problem in the low Mach number regime where the new semi-implicit algorithm is a factor of 50 faster than a traditional explicit finite volume method, which is a very significant gain in terms of computational efficiency. However, our numerical results confirm that our new method performs well also for classical MHD test cases with strong shocks. In this sense, our new scheme is a true all Mach number flow solver.  相似文献   

14.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A new semi‐staggered finite volume method is presented for the solution of the incompressible Navier–Stokes equations on all‐quadrilateral (2D)/hexahedral (3D) meshes. The velocity components are defined at element node points while the pressure term is defined at element centroids. The continuity equation is satisfied exactly within each elements. The checkerboard pressure oscillations are prevented using a special filtering matrix as a preconditioner for the saddle‐point problem resulting from second‐order discretization of the incompressible Navier–Stokes equations. The preconditioned saddle‐point problem is solved using block preconditioners with GMRES solver. In order to achieve higher performance FORTRAN source code is based on highly efficient PETSc and HYPRE libraries. As test cases the 2D/3D lid‐driven cavity flow problem and the 3D flow past array of circular cylinders are solved in order to verify the accuracy of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier‐Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function‐vorticity‐magnetic induction‐current density formulation of the full MHD equations in 2D. The stream function and magnetic induction equations which are poisson‐type, are solved by using DRBEM with the fundamental solution of Laplace equation. In the DRBEM solution of the time‐dependent vorticity and current density equations all the terms apart from the Laplace term are treated as nonhomogeneities. The time derivatives are approximated by an implicit backward difference whereas the convective terms are approximated by radial basis functions. The applications are given for the MHD flow, in a square cavity and in a backward‐facing step. The numerical results for the square cavity problem in the presence of a magnetic field are visualized for several values of Reynolds, Hartmann and magnetic Reynolds numbers. The effect of each parameter is analyzed with the graphs presented in terms of stream function, vorticity, current density and magnetic induction contours. Then, we provide the solution of the step flow problem in terms of velocity field, vorticity, current density and magnetic field for increasing values of Hartmann number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A finite element method for quasi‐incompressible viscous flows is presented. An equation for pressure is derived from a second‐order time accurate Taylor–Galerkin procedure that combines the mass and the momentum conservation laws. At each time step, once the pressure has been determined, the velocity field is computed solving discretized equations obtained from another second‐order time accurate scheme and a least‐squares minimization of spatial momentum residuals. The terms that stabilize the finite element method (controlling wiggles and circumventing the Babuska–Brezzi condition) arise naturally from the process, rather than being introduced a priori in the variational formulation. A comparison between the present second‐order accurate method and our previous first‐order accurate formulation is shown. The method is also demonstrated in the computation of the leaky‐lid driven cavity flow and in the simulation of a crossflow past a circular cylinder. In both cases, good agreement with previously published experimental and computational results has been obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We recently proposed an improved (9,5) higher order compact (HOC) scheme for the unsteady two‐dimensional (2‐D) convection–diffusion equations. Because of using only five points at the current time level in the discretization procedure, the scheme was seen to be computationally more efficient than its predecessors. It was also seen to capture very accurately the solution of the unsteady 2‐D Navier–Stokes (N–S) equations for incompressible viscous flows in the stream function–vorticity (ψ – ω) formulation. In this paper, we extend the scope of the scheme for solving the unsteady incompressible N–S equations based on primitive variable formulation on a collocated grid. The parabolic momentum equations are solved for the velocity field by a time‐marching strategy and the pressure is obtained by discretizing the elliptic pressure Poisson equation by the steady‐state form of the (9,5) scheme with the Neumann boundary conditions. In particular, for pressure, we adopt a strategy on the collocated grid in conjunction with ideas borrowed from the staggered grid approach in finite volume. We first apply this extension to a problem having analytical solution and then to the famous lid‐driven square cavity problem. We also apply our formulation to the backward‐facing step problem to see how the method performs for external flow problems. The results are presented and are compared with established numerical results. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This work presents a finite element solution of the 3D magneto‐hydrodynamics equations. The formulation takes explicitly into account the local conservation of the magnetic field, giving rise to a conservative formulation and introducing a new scalar variable. A stabilization technique is used in order to allow equal linear interpolation on tetrahedral elements of all the variables. Numerical tests are performed in order to assess the stability and the accuracy of the resulting methods. The convergence rates are calculated for different stabilization parameters. Well‐known MHD benchmark tests are calculated. Results show good agreement with analytical solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号