共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of computational chemistry》2018,39(19):1285-1290
Consistent basis sets of double‐ and triple‐zeta valence with polarization quality for the fifth period have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are an extension of the pob‐TZVP basis sets, and are based on the full‐relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2‐SVP and def2‐TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self‐consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob‐DZVP and pob‐TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc. 相似文献
2.
Daniel Vilela Oliveira Joachim Laun Michael F. Peintinger Thomas Bredow 《Journal of computational chemistry》2019,40(27):2364-2376
Revised versions of our published pob-TZVP [Peintinger, M. F.; Oliveira, D. V. and Bredow, T., J. Comput. Chem., 2013, 34 (6), 451–459.] and unpublished pob-DZVP basis sets, denoted as pob-TZVP-rev2 and pob-DZVP-rev2, have been derived for the elements H Br. It was observed that the pob basis sets suffer from the basis set superposition error (BSSE). In order to reduce this effect, we took into account the counterpoise energy of hydride dimers as an additional parameter in the basis set optimization. The overall performance, portability, and SCF stability of the resulting rev2 basis sets are significantly improved compared to the original pob basis sets. © 2019 Wiley Periodicals, Inc. 相似文献
3.
Eugene S. Kryachko Antnio J. C. Varandas 《International journal of quantum chemistry》2002,89(4):255-259
Some new properties of the nonadiabatic coupling elements are derived, in particular the orthogonality and gauge invariance of their longitudinal and transverse components. A method for constructing a strictly diabatic basis set that makes both the transverse and longitudinal components of the nonadiabatic coupling elements of the two‐state problem vanish identically and is based on introducing overlap between the electronic states in the vicinity of the crossing seam is proposed. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002 相似文献
4.
We investigate the optimization of Gaussian basis sets for relativistic calculations within the framework of the restricted Dirac-Hartree-Fock (DHF) method for atoms. We compare results for Rn of nonrelativistic and relativistic basis set optimizations with a finite nuclear-size. Optimization of separate sets for each spin-orbit component shows that the basis set demands for the lower j component are greater than for the higher j component. In particular, the p
1/2 set requires almost as many functions as the s
1/2 set. This implies that for the development of basis sets for heavy atoms, the symmetry type for which a given number of functions is selected should be based on j, not on l, as has been the case in most molecular calculations performed to date. 相似文献
5.
Franz Mark 《Theoretical chemistry accounts》1986,70(3):165-188
Gaussian basis sets for use in relativistic molecular calculations are developed for atoms and ions with one to ten electrons. A relativistic radial wavefunction coupled to an angular function of l-symmetry is expanded into a linear combination of spherical Gaussians of the form r
l
exp (–r
2). One set of basis functions is used for all large and small components of the same angular symmetry. The expansion coefficients and the orbital exponents have been determined by minimizing the integral over the weighted square of the deviation between the Dirac or Dirac-Fock radial wavefunctions and their analytical approximations. The basis sets calculated with a weighting function inversely proportional to the radial distance are found to have numerical constants very similar to those of their energy-optimized non-relativistic counterparts. Atomic sets are formed by combining l-subsets. The results of relativistic and non-relativistic calculations based on these sets are analyzed with respect to different criteria, e.g. their ability to reproduce the relativistic total energy contribution and the spin-orbit splitting. Contraction schemes are proposed.Dedicated to Prof. Dr. A. Neckel on occasion of his 60th birthday 相似文献
6.
7.
8.
9.
J. Grant Hill 《Journal of computational chemistry》2013,34(25):2168-2177
Auxiliary basis sets (ABS) specifically matched to the cc‐pwCVnZ‐PP and aug‐cc‐pwCVnZ‐PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y‐Pd at the second‐order Møller‐Plesset perturbation theory level. Calculation of the core‐valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution‐of‐the‐identity component of explicitly correlated calculations is also investigated, where it is shown that i‐type functions are important to produce well‐controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double‐ζ calculations produce results close to conventional quadruple‐ζ, and triple‐ζ is within chemical accuracy of the complete basis set limit. © 2013 Wiley Periodicals, Inc. 相似文献
10.
Maxim Zakharov 《International journal of quantum chemistry》2013,113(15):1899-1918
Numerical atom‐centered basis sets (orbitals) (NAO) are known for their compactness and rapid convergence in the Hartree–Fock and density‐functional theory (DFT) molecular electronic‐structure calculations. To date, not much is known about the performance of the numerical sets against the well‐studied Gaussian‐type bases in correlated calculations. In this study, one instance of NAO [Blum et al., The Fritz Haber Institute ab initio Molecular Simulations Package (FHI‐aims), 2009] was thoroughly examined in comparison to the correlation‐consistent basis sets in the ground‐state correlated calculations on the hydrogen‐bonded water and dispersion‐dominated methane dimers. It was shown that these NAO demonstrate improved, comparing to the unaugmented correlation‐consistent based, convergence of interaction energies in correlated calculations. However, the present version of NAO constructed in the DFT calculations on covalently‐bound diatomics exhibits enormous basis‐set superposition error (BSSE)—even with the largest bases. Moreover, these basis sets are essentially unable to capture diffuse character of the wave function, necessary for example, for the complete convergence of correlated interaction energies of the weakly‐bound complexes. The problem is usually treated by addition of the external Gaussian diffuse functions to the NAO part, what indeed allows to obtain accurate results. However, the operation increases BSSE with the resulting hybrid basis sets even further and breaks down the initial concept of NAO (i.e., improved compactness) due to the significant increase in their size. These findings clearly point at the need in the alternative strategies for the construction of sufficiently‐delocalized and BSSE‐balanced purely‐numerical bases adapted for correlated calculations, possible ones were outlined here. For comparison with the considered NAOs, a complementary study on the convergence properties of the correlation‐consistent basis sets, with a special emphasis on BSSE, was also performed. Some of its conclusions may represent independent interest. © 2013 Wiley Periodicals, Inc. 相似文献
11.
We discuss the connection between the completeness of a basis set, measured by the completeness profiles introduced by Chong (Can J Chem 1995, 73, 79) at a certain exponent interval, and the possibility of reproducing molecular properties that arise either in the region close to the atomic nuclei or in the valence region. We present a scheme for generating completeness-optimized Gaussian basis sets, in which a preselected range of exponents is covered to an arbitrary accuracy. This is done by requiring Gaussian functions, the exponents of which are selected without reference to the atomic structure, to span the range with completeness profile as close to unity as wanted with as few functions as possible. The initial exponent range can be chosen suitable for calculations of molecular energetics or other valence-like properties. By extending the exponent range, properties requiring augmentation of the basis at a given angular momentum value and/or in a given distance range from the nucleus may be straightforwardly and systematically treated. In this scheme a universal, element-independent exponent set is generated in an automated way. The relation of basis-set completeness and performance in the calculation of magnetizability, nuclear magnetic shielding, and spin-spin coupling is tested with the completeness-optimized primitive sets and literature basis sets. 相似文献
12.
We investigate numerical linear dependencies of Gaussian-type orbital basis sets employed in the framework of the Hartree-Fock
self-consistent field method for periodic structures, which so far have hampered the use of extended basis sets for non-ionic
crystals. These linear dependencies occur when diffuse basis functions are included in a basis set in an uncontrolled manner.
We use the condition number of the overlap matrix to lead us in the construction of extended basis sets for periodic structures
which avoid numerical linear dependencies. Extended basis sets of high quality are optimized for a number of periodic structures
(fcc He, α-Be, α-BN, and B1 NaF) with respect to the energy of the constituent atoms or ions. The results obtained with our
basis sets, which do not require reoptimization in the crystal environment, compare favorably with those obtained with other
extended basis sets reported in the literature.
Received: 20 July 1998/Accepted: 21 August 1998 / Published online: 19 October 1998 相似文献
13.
J. Grant Hill 《International journal of quantum chemistry》2013,113(1):21-34
The choice of basis set in quantum chemical calculations can have a huge impact on the quality of the results, especially for correlated ab initio methods. This article provides an overview of the development of Gaussian basis sets for molecular calculations, with a focus on four popular families of modern atom‐centered, energy‐optimized bases: atomic natural orbital, correlation consistent, polarization consistent, and def2. The terminology used for describing basis sets is briefly covered, along with an overview of the auxiliary basis sets used in a number of integral approximation techniques and an outlook on possible future directions of basis set design. © 2012 Wiley Periodicals, Inc. 相似文献
14.
Summary Energy-optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed; (24s 16p 10d) and (26s 16p 10d) sets which we expand to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284E
H above the numerical Hartree-Fock energies. 相似文献
15.
Contracted basis sets of double zeta (DZ) quality for the atoms from K to Kr are presented. They were determined from fully optimized basis sets of primitive Gaussian-type functions generated in atomic Hartree-Fock calculations. Sets of Gaussian polarization functions optimized at the Möller-Plesset second-order level were added to the DZ basis set. This extends earlier work on segmented contracted DZ basis set for atoms H-Ar. From this set, using the BP86 nonhybrid and B3LYP hybrid functionals, dissociation energy, geometric parameters, harmonic vibrational frequency, and electric dipole moment of a set of molecules were calculated and compared with results obtained with other basis sets and with experimental data reported in the literature. In addition, 57Fe and 77Se nuclear magnetic resonance chemical shifts in Fe(C5H5)2, H2Se, and CSe2 were calculated using density functional theory and gauge-including atomic orbitals and, then, compared with theoretical and experimental values previously published in the literature. Except for chemical shift, one verifies that our results give the best agreement with experimental and benchmark values. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008 相似文献
16.
Following the recent studies of basis sets explicitly dependent on oscillatory external electric field we have investigated the possibility of some further truncation of the so-called polarized basis sets without any major deterioration of the computed data for molecular dipole moments, dipole polarizabilities, and related electric properties of molecules. It has been found that basis sets of contracted Gaussian functions of the form [3s1p] for H and [4s3p1d] for the first-row atoms can satisfy this requirement with particular choice of contractions in their polarization part. With m denoting the number of primitive GTOs in the contracted polarization function, the basis sets devised in this article will be referred to as the ZmPol sets. In comparison with earlier, medium-size polarized basis sets (PolX), these new ZmPol basis sets are reduced by 2/3 in their size and lead to the order of magnitude computing time savings for large molecules. Simultaneously, the dipole moment and polarizability data remain at almost the same level of accuracy as in the case of the PolX sets. Among a variety of possible applications in computational chemistry, the ZmPolX are also to be used for calculations of frequencies and intensities in the Raman spectra of large organic molecules (see Part II, this issue). 相似文献
17.
Summary Calculations were done on ground and excited states of C2, C
2
+
, C
2
–
, N2, N
2
+
, O2, O
2
+
, O
2
–
, CO, CO+, CO2+, and CO– using contracted well-tempered basis sets. The (14s 10p) basis sets were augmented with threed, one or twof, and oneg functions. Total energies, orbital energies, and spectroscopic constants were compared with the best available computational data. 相似文献
18.
Optimized contracted Gaussian basis sets of double-zeta valence polarized (DZVP) quality for first-row transition metals are presented. The DZVP functions were optimized using the PWP86 generalized gradient approximation (GGA) functional and the B3LYP hybrid functional. For a careful analysis of the basis sets performance the transition metal atoms and cations excitation energies were calculated and compared with the experimental ones. The calculated values were also compared with those obtained using the previously available DZVP basis sets developed at the local-density functional level. Because the new basis sets work better than the previous ones, possible reasons of this behavior are analyzed. The newly developed basis sets also provide a good estimation of other atomic properties such as ionization energies. 相似文献
19.
A new model of solid‐state polymerization of nylon‐6,6 has been developed. The polymer crystalline fraction is assumed to consist of only repeat units, leaving end‐groups and condensate in the amorphous fraction. Many effects neglected by previous models are considered, such as variable crystallinity, initial moisture and starting molecular weight. This model is compared to experimental data with good agreements. Differential scanning calorimetry graphs show that the crystalline structure phase tends to be increasingly perfect during heat treatment, indicative of the premelting temperature drawing near the melting point up to 14 °C after solid‐state polycondensation with little change of melting point. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
20.
Yoshihiro Watanabe Hiroshi Tatewaki Toshikatsu Koga Osamu Matsuoka 《Journal of computational chemistry》2006,27(1):48-52
Relativistic single‐family exponent Gaussian basis sets for molecular calculations are presented for the 80 atoms 1H through 80Hg. The exponent parameters shared by Gaussian basis functions of all symmetry species are fully optimized. Two nucleus models of uniformly charged sphere and Gaussian charge distribution are considered and two kinds of basis sets are generated accordingly. The total energy errors are less than 2 mhartree in any atoms. Some of the present basis sets include small variational collapse (or prolapse), but test calculations show that they could be reliably applied to molecular calculations. © 2005 Wiley Periodicals, Inc. J Comput Chem 27: 48–52, 2006 相似文献