首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(10):1853-1863
Abstract

NiO nanoparticles (NiO NPs) were prepared with chemical precipitation method and modified on the surface of vaseline‐impregnated graphite electrode with chitosan. It was found that, based on the catalysis of the NiO NPs for the chemiluminescent reaction of the ECL process, the enhancing effect of isoniazid on the weak electrogenerated chemiluminescence (ECL) signal of luminol at a NiO NPs‐chitosan modified electrode was stronger than that at a bare graphite electrode. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration over the range 3.0×10?10~1.0×10?6 g/ml at the NiO NPs‐chitosan modified electrode with a detection limit of 1.0×10?10 g/ml.  相似文献   

2.
Tripropylamine (TPA) is a highly toxic and carcinogenic compound, therefore, TPA concentration in water must be monitored to protect health and the environment. In this paper, an electrochemiluminescent (ECL) sensor was fabricated by immobilising Ru(bpy)32+‐modified CuO nanoparticles (NPs) on a TiO2 nanotube array (TN) electrode. Compared to an ECL sensor fabricated by immobilising Ru(bpy)32+ on a TN only electrode, the as‐prepared sensor displays a 30 % enhanced ECL signal and a detection limit of 9.6×10?10 M at a signal‐to‐noise ratio=3 with the concentration of TPA in a range 1×10?9 to 1×10?5 M. The results from this study indicated a new approach for the enhancement of performance of ECL sensor in detecting TPA in water.  相似文献   

3.
The anodic electrochemiluminescence (ECL) of dissolved oxygen with 2‐(dibutylamino) ethanol (DBAE) on platinum electrode has been reported previously by our group. Interestingly, the ECL intensity can be greatly amplified at TiO2 nanoparticles modified platinum electrode (TiO2/Pt), which is due to the catalytic effect of TiO2 nanoparticles to electrochemical oxidation of DBAE. It is the first case to obtain the enhanced ECL from luminophor by electrochemical catalysis of co‐reactant. The enhanced anodic ECL intensity can be quenched by dopamine sensitively. And the ECL intensity versus the logarithm of concentration of dopamine was linear over the 4.0×10?12–1.8×10?8 M (R2=0.9957), with the limit of detection of 2.7×10?12 M (S/N=3).  相似文献   

4.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

5.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

6.
Mesoporous titania‐Nafion composite doped with carbon nanotube (CNT) has been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy)32+) and alcohol dehydrogenase on an electrode surface to yield a highly sensitive and stable electrogenerated chemiluminescence (ECL) ethanol biosensor. The presence of CNT in the composite film increases not only the sensitivity of the ECL biosensor but also the long‐term stability of the biosensor. The present biosensor responds linearly to ethanol in the wide concentration ranges from 1.0×10?5 M to 1.0×10?1 M with a detection limit of 5.0×10?6 M (S/N=3). The present ECL ethanol biosensor exhibited higher ECL response compared to that obtained with the ECL biosensor based on the corresponding composite without CNT. The present CNT‐based ECL biosensor showed good long‐term stability with 75% of its initial activity retained after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

7.
Metal organic frameworks (MOFs) have attracted extensive attention in electrochemical research fields due to their high surface area and controlled porosity. Current study is design to investigate the ECL performance of the chemically modified electrode (CME) based on the bio-MOF-1, a porous zinc-adenine framework, which loaded ruthenium complex and employed for the detection of dopamine (DA). The composite material [Ru(bpy)3]2+@bio-MOF-1 (Ru-bMOF) modified carbon glassy electrode (Ru-bMOF/GCE) exhibited an excellent ECL performance having a linear co-efficient response (R2=0.9968) for 2-(dibutyl amino) ethanol (DBAE), a classical ECL co-reactant was obtained over a concentration range of 1.0×10−9 M to 1.0×10−4 M in 0.10 M pH=6.0 phosphate buffer solution (PBS). Furthermore, DA was detected based on its inhibition effect on [Ru(bpy)3]2+/DBAE system. Compared to traditional analytical methods, this method has various advantages such as simple electrode preparation, quick response, high reproducibility (RSD<2.0 %), low limit of detection (LOD=1.0×10−10 mol/L). This chemical investigated modified electrode had exploited potential for detection of DA.  相似文献   

8.
An ultrasensitive electrochemiluminescence (ECL) method on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed for improving ECL analytical characteristics using vanadate(V) as a representative. Vanadate(V) could be electrochemically reduced to generate vanadate(II) which could be chemically oxidized by potassium periodate to regenerate vanadate(V) and give parallel catalytic wave effect. Then, the reduced product of potassium periodate could react with butyl‐rhodamine B to emit a sensitive chemiluminescence signal. The chemiluminescence intensity was correlative with vanadate(V) concentration. The investigation on the electrochemical reaction rate constant (k0) confirmed that the speed of electrochemical reaction was faster than that of the subsequent chemiluminescence reaction. The possibility of the combination of electrochemical parallel catalytic reaction with chemiluminescence signal sensing was proved. The similar ECL behaviors could be observed at zirconia nanowires‐Nafion modified electrode. Because of the separation and enrichment effect of the modified electrode on vanadate(V), the selectivity and sensitivity was further improved greatly. Based on these findings, a new concept on the combination of electrochemical parallel catalytic reaction and chemiluminesence signal sensing was proposed and an ultrasensitive ECL method for the determination of vanadate(V) was developed at zirconia nanowires‐Nafion modified electrode. Under the optimum experimental conditions, the ECL intensity was linear with the concentration of vanadate(V) in the range of 2.0×10?12 mol/L–2.0×10?10 mol/L. The detection limit was 8.0×10?13 mol/L, which was more than 6 orders of magnitude lower than that observed by electrochemical current transduction for electrochemical parallel catalytic reaction at zirconia nanowires‐Nafion modified electrode.  相似文献   

9.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

10.
Yulong Gao  Tao Wang  Fengyu Liu 《中国化学》2016,34(12):1297-1303
The electrochemiluminescence (ECL) of the Ru(phen)32+/thymine (T) system at bare and graphene oxide (GO)‐modified glassy carbon (GC) electrodes was utilized to determine Hg2+ in tap water. The ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of thymine because of the occurrence of ECL reaction between them. Subsequently, the ECL intensity of Ru(phen)32+/T system rapidly decreased with the addition of Hg2+ because of the formation of a T‐Hg2+‐T complex. A linear response (R2=0.9914) was obtained over a Hg2+ concentration range of 1.0×10?9 mol/L to 1.0×10?5 mol/L with a detection limit of 3.4×10?10 mol/L at a bare GC electrode in 0.1 mol/L phosphate buffer (pH=8.0). The detection limit can be further reduced to 4.2×10?12 mol/L after modification of the GC electrode by GO. To verify its applicability, the proposed method was utilized to determine Hg2+ in tap water and simulated wastewater. The method exhibited good reproducibility and stability and thus reveals the possibility of developing a novel ECL detection method for Hg2+.  相似文献   

11.
A new modified carbon‐ceramic electrode was prepared by incorporating TiO2 nanoparticle into sol‐gel network by accompanying apple tissue. A mixture of fine graphite powder with 15 wt% of TiO2 nanoparticle was used for the preparation of the carbon matrix and finally modification with a known amount weighted of apple tissue. The apple tissue containing polyphenol oxidase enzyme acts as molecular recognition element. The electrocatalytic oxidation of dopamine was investigated on the surface of the nanobiocomposite modified carbon‐ceramic electrode using cyclic voltammetry, chronoamperometry and amperometry techniques. Effect of pH, scan rate, TiO2 percentage on the response of modified electrode was studied. The prepared modified electrode presented a linear range for dopamine from 5.0×10?6 to 1.2×10?3 M in buffered solutions with pH 7.4 by amperometry. The detection limit was 3.41×10?6 M dopamine. The response of the modified carbon‐ceramic electrode and unmodified carbon‐ceramic electrode was compared.  相似文献   

12.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

13.
When the concentration of dodecyl benzene sulfonic acid sodium salt (SDBS) is 0.7 mmol·L?1, the electrochemical and electrochemiluminescence (ECL) intensity of Ru(bpy)32+‐chlorpheniramine maleate (CPM) system at the Au electrode were studied. The results showed that compared with the absence of SDBS, enhancement of the ECL intensity was 14‐fold at Au electrode. Base on this, an ECL method was established for efficient and simple determination of CPM at Au electrode. Under the optimum experimental condition, the enhanced ECL intensities had good linear relationship with the concentration of CPM in the range of 1.0×10?4–1.0×10?7 mol·L?1, and a linear regression equation was obtained as follows: I (counts)=48.805×106c+394.03 (r=0.9975), the detection limit for CPM was 1.4×10?8 mol·L?1. The RSD for 5 times determinations of 1.0×10?5 mol·L?1 CPM was 3.2%. The results of recovery test were between 96.3%–102.5%, and the RSD of recovery test (n=5) was 2.7%. In addition, eleven kinds of tertiary amines‐Ru(bpy)32+ systems were investigated in the absence and presence of SDBS. The results showed that the enhancement of SDBS on ECL intensity of tertiary amines‐Ru(bpy)32+ systems was universal.  相似文献   

14.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

15.
Glucose oxidase(GOD) was encapsulated in the Graphene/Nafion film modified glassy carbon electrode(GCE) and used as an ECL sensor for glucose. The GOD retains its bioactivity after being immobilized into the composite film. The sensor gives a linear response for glucose in the range of 2.0×10?6–1.0×10?4 mol/L with a detection limit of 1.0×10?6 mol/L. The sensor showed good stability, the RSD for continuous scanning for 5.0×10?5 mol/L glucose was 4.21 % (n=5). After being stored in 0.05 mol/L pH 7.4 PBS in 4 °C for two weeks, the modified electrode maintains 80 % of its initial activity. The glucose sensor provides new opportunity for clinical diagnosis applications.  相似文献   

16.
Introduction The analysis of DNA sequence and DNA mutant detection play fundamental roles in the rapid development of molecular diagnostics and in the anticancer drug screening. Therefor many detection techniques of DNA sequence have been developed in recent years. These techniques mainly depend on the nucleic acid hybridization1 and their sensitivities are related to the specific activity of the label linked to the DNA probe. The degree of hybridization of probe to its complementary DN…  相似文献   

17.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

18.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

19.
Highly stable Nafion‐covered hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN)64?/Naf) film modified glassy carbon electrode (GCE), for the selective detection of dopamine (DA) in the presence of ascorbic acid (AA), was prepared by first ion‐exchanging Fe(CN)64? into PLL‐GA coating on GCE then sealing it with a Nafion outer layer. The Nafion over layer is crucial in preventing leaching of Fe(CN)64? ions from the inner layer. The first layer was acting as electrocatalyst for DA oxidation and the outer coating acted as discriminating layer for selective permeation of DA in the presence of interfering anionic species. More than 90% of the initial response was retained after coating with the Nafion protecting layer compared to a huge loss (>60%) without Nafion outer layer. 5% Nafion coating was identified as optimum thickness for the selective detection of DA in the presence of AA.  相似文献   

20.
《Electroanalysis》2006,18(18):1838-1841
The immobilization of tris(2,2'‐bipyridyl)ruthenium(II) [Ru(bpy) ] in a TiO2/Nafion nanocomposites membrane modified glassy carbon electrode (GCE) was achieved via both an ion‐exchange process and hydrophobic interactions .The surface‐confined Ru(bpy) shows good electrochemical and photochemical activities. The Ru(bpy) underwent reversible surface process and reacted with chlorphenamine maleate (CPM) to produce electrochemiluminescence. The modified electrode was used for the ECL determination of CPM. It showed good linearity in the concentration range from 2×10?8 g/mL to 1×10?6 g/mL (R=0.9995) with a detection 6×10?9 g/mL (S/N=3). The relative standard derivation (n=11) was 2%. This method is developed for the determination of CPM with simplicity and high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号