首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a microfluidic gradient device for controlling mucin gene expression of NCI-H292 epithelial cells derived from lung tissues. We hypothesized that gradient profiles would control mucin gene expression of lung epithelial cells. However, it was not possible to generate various stable gradient profiles using conventional culture methods. To address this limitation, we used a microfluidic gradient device to create various gradient profiles (i.e. non-linear, linear, and flat) in a temporal and spatial manner. NCI-H292 lung epithelial cells were exposed to concentration gradients of epidermal growth factor in a microfluidic gradient device with continuous medium perfusion. We demonstrated an effect of gradient profiles on mucin expression of lung epithelial cells cultured in the microfluidic gradient device. It was revealed that NCI-H292 lung epithelial cells exposed to the flat gradient profile of the epidermal growth factor exhibited high expression of mucin as compared with cells exposed to non-linear and linear gradient profiles. Therefore, this microfluidic gradient device could be a potentially useful tool for regulating the mucin expression of lung epithelial cells exposed to chemokine gradient profiles.  相似文献   

2.
3.
The temperature dependence of the ballistic impact performance of a series of transparent polymer networks is evaluated. A systematic series of homogeneous epoxy/propylene‐oxide‐based thermosets, a nanoscale phase‐separated epoxy/dual amine thermoset, and two homogeneous, completely aliphatic materials synthesized via ring‐opening metathesis polymerization are examined. The Vogel temperature (To) and the Kauzmann temperature (TK) are critical parameters for scaling the temperature‐dependent ballistic impact performance of each class of materials. The ductile‐to‐brittle transition temperature in a series of propylene‐oxide amine‐cured epoxies occurs at the material TK, corresponding to a sharp drop in fracture toughness and ballistic impact performance. Two aliphatic, ring‐opening metathesis polymerized materials are found to exhibit no clear transition from purely ductile to purely brittle behavior, but the temperature dependence is still scaled to a single curve when normalized by To. The cooperatively rearranging region (CRR) or the volume of this region is related to the breadth of temperatures over which these materials exhibit purely ductile deformation both quasi‐statically and at higher rates. The temperature‐dependent performance is discussed in the context of the configurational entropy. The breadth of the ductility window is related to the size of the CRR, calculated from calorimetric measurements at the resin Tg. Published 2019. This article is a U.S. Government work and is in the public domainin the USA. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 511–523  相似文献   

4.
Circulating tumor cells are specifically referred as cells that detached from the primary tumor and are present in the bloodstream. They could be isolated from blood and used as representative biomarker for predicting cancer prognoses. Here, we developed a microfluidic chip with multiple curved channels, in which DNA fragments and antibody‐based enrichment are exploited to capture circulating tumor cells in blood sample. By introducing DNA fragments as long tentacles, the active antibody could be extended into the microchannel stereoscopically, which could greatly increase the chances of adhesion in a multidirectional way and improve the capture efficacy. Several pivotal factors for cell capturing were optimized to the best state. Compared to conventional chips for planar capturing, the capture efficiency of MCF‐7 cells was greatly increased from 37.17 to 85.10%. For the detection of MCF‐7‐containing artificial blood sample detection, the capture efficiency of tumor cells was about 74.19 ± 2.13%, which was obviously better than the result of flow cytometry (29.67 ± 4.02%). Captured cells were easily released from the surface of microfluidic chip with high cell viability, which could be investigated for the molecular analysis in the field of tumor diagnosis.  相似文献   

5.
A method available in literature was adapted and proposed for treating scatter and nonlinearity effects in fracture toughness of polymers in the ductile‐to‐brittle transition regime. The materials used were polypropylene homopolymer (PPH) and a polypropylene‐elastomeric polyolefin blend (PPH/POes 20 wt %), at room temperature and at 20‐mm/min test rate. Under such conditions, the fracture toughness presents a large scatter and a mean value can not be used as a design parameter because it leads to toughness overestimation. Then, there is a need to find a threshold of toughness, as a safe characteristic value for design. The toughness was evaluated by using the J‐integral approach. Large sets of specimens, 53 samples per each material, were tested with the purpose to reveal a reliable tendency in fracture behavior. As the toughness was considered nonuniform throughout the material, a weakest link model was assumed, and then results were analyzed statistically by means of a three‐parameter Weibull model (3P‐W). The PPH responded well to this 3P‐W model, whereas some deviations from the original model were observed in the PPH/POes blend. However, lower‐bound toughness values could be determined for both materials by censoring nonvalid data (Δa > 0.1b0). From an engineering point of view, the results are very encouraging, since this methodology allows to obtain a threshold of fracture toughness from a given population, that is suitable to characterize the material fracture toughness at a given temperature and strain rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3674–3684, 2005  相似文献   

6.
Aqueous‐Phase Reforming (APR) is a promising hydrogen production method, where biomass is catalytically reformed under high pressure and high temperature reaction conditions. To eventually study APR, in this paper, we report a high‐pressure and high‐temperature microfluidic platform that can withstand temperatures up to 200°C and pressures up to 30 bar. As a first step, we studied the phase transition of four typical APR biomass model solutions, consisting of 10 wt% of ethylene glycol, glycerol, xylose or xylitol in MilliQ water. After calibration of the set‐up using pure MilliQ water, a small increase in boiling point was observed for the ethylene glycol, xylitol and xylose solutions compared to pure water. Phase transition occurred through either explosive or nucleate boiling mechanisms, which was monitored in real‐time in our microfluidic device. In case of nucleate boiling, the nucleation site could be controlled by exploiting the pressure drop along the microfluidic channel. Depending on the void fraction, various multiphase flow patterns were observed simultaneously. Altogether, this study will not only help to distinguish between bubbles resulting from a phase transition and/or APR product formation, but is also important from a heat and mass transport perspective.  相似文献   

7.
A new fluorinated version of a cyclic β‐aminoalcohol gelator derived from 1,2,3,4‐tetrahydroisoquinoline is presented. The gelator is able to gel various nonprotic solvents through OH???N hydrogen bonds and additional CH???F interactions due to the introduction of fluorine. A bimolecular lamellar structure is formed in the gel phase, which partly preserves the pattern of molecular organization in the single crystal. The racemate of the chiral gelator shows lower gelation ability than its enantiomer because of a higher tendency to form microcrystals, as shown by X‐ray diffraction analysis. The influence of fluorination on the self‐assembly of the gelator and the properties of the gel was investigated in comparison to the original fluorine‐free gel system. The introduction of fluorine brings two new features. The first is good recognition of o‐xylene by the gelator, which induces an in situ transition from gels of o‐xylene and of an o‐xylene/toluene mixture to identical single crystals with unique tubular architecture. The second is the enhanced stability of the toluene gel towards ions, including quaternary ammonium salts, which enables the preparation of a stable toluene gel in the presence of chloroaurate or chloroplatinate. The gel system can be used as a template for the synthesis of spherical gold nanoparticles with a diameter of 5 to 9 nm and wormlike platinum nanostructures with a diameter of 2 to 3 nm and a length of 5 to 12 nm. This is the first example of a synthesis of platinum nanoparticles in an organogel medium. Therefore, the appropriate introduction of a fluorine atom and corresponding nonbonding interactions into a known gelator to tune the properties and functions of a gel is a simple and effective tactic for design of a gel system with specific targets.  相似文献   

8.
For revealing the dynamics of partially obstructed breakup of bubbles in microfluidic Y‐junctions, the combination of dimensionless power‐law and geometric model was applied to study the effects of capillary number, bubble length, and channel angle on the bubble rupture process. In the squeezing process, the gas‐liquid interface curve follows the parabolic model. For the evolution of the bubble neck during breakup, the increase of the bubble length, the channel angle, and the capillary number leads to the decrease of the focus distance α. The chord m increases with the increase of the capillary number and the decrease of the bubble length, and it would reach the maximum value when the channel angle is 90°. In the fast pinch‐off stage during bubble breakup, the bubble's neck curve no longer conforms to the parabolic model so the focus and chord no longer exist. For the evolution of the bubble head during breakup, the value of γ approaches 1 with the increase of the capillary number and the bubble length, and with the close of the channel angle to 90°. It is found that the quadrilateral model can be applied for the partially obstructed rupture of bubbles in the symmetrical microfluidic Y‐junction.  相似文献   

9.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

10.
Fibroblasts and tumor cells have been involved in the process of cancer development, progression and therapy. Here, we present a simple microfluidic device which enables to study the interaction between fibroblasts and tumor cells by indirect contact co‐culture. The device is composed of multiple cell culture chambers which are connected by a parallel of cell migration regions, and it enables to realize different types of cells to communicate each other on the single device. In this work, human embryonic lung fibroblasts cells were observed to exhibit obvious migration towards tumor cells instead of normal epithelial cells on the co‐culture device. Moreover, transdifferentiation of human embryonic lung fibroblast cells was recognized by the specific expression of α‐smooth musle actin, indicating the effect of tumor cells on the behavior of fibroblasts. Furthermore, multiple types of cell co‐culture can be demonstrated on the single device which enables to mimic the complicated microenviroment in vivo. The device is simple and easy to operate, which enables to realize real‐time observation of cell migration after external stimulus. This microfluidic device allows for the characterization of various cellular events on a single device sequentially, faciliating the better understanding of interaction between heterotypic cells in a more complex microenvironment.  相似文献   

11.
The toxicology of nanomaterials is a blooming field of study, yet it is difficult to keep pace with the innovations in new materials and material applications. Those applications are quickly being introduced in research, industrial, and consumer settings. Even though the cytotoxicity of many types of nanoparticles has been demonstrated, the behavior of those particles in a biological environment is not yet fully known. This work characterized the following over time: protein adsorption on silica particle surfaces, the internalization of particles in human lung carcinoma (A549) cells when coated with different specific proteins or no proteins at all, and the cellular loss of particles following the removal of extracellular particles. Proteins were shown to quickly saturate the particle surface, followed by a competitive process of particle agglomeration and protein adsorption. Uptake of particles peaked at 8–10 h, and it was determined that, in this system, the charge of the protein-coated particles changed the rate of uptake if the charge difference was great enough. Cells internalized particles lacking any adsorbed proteins with approximately 3 times the rate of protein-coated particles with the same charge. Although particles exited cells over time, the process was slower than uptake and did not near completion within 24 h. Finally, analysis at the single cell level afforded observations of particle agglomerates loosely associated with cell membranes when serum was present in the culture medium, but in the absence of serum, particles adhered to the dish floor and formed smaller agglomerates on cell surfaces. Although data trends were easily distinguished, all samples showed considerable variation from cell to cell. Figure Silica-capped fluorescent semiconductor nanoparticles as internalized by human lung epithelial cells and adsorbed to a glass substrate in protein-free culture medium.  相似文献   

12.
Physical cues from the extracellular microenvironment play an important role in regulating cell behavior, such as adhesion, migration, and differentiation. Many studies have shown that different physical parameters (eg, stiffness and topography) could modulate the in vitro differentiation of mesenchymal stem cells (MSCs), which had multilineage differentiation potential and could be easily isolated from various tissues such as bone marrow, adipose tissue, and the umbilical cord. However, the underlying mechanism of the topographical influence on MSCs and the detailed cell‐substrate interaction remain unclear. Here, we present oriented elliptical inverse opal structures for regulating the morphology and alignment of bone marrow‐derived MSCs. The inverse opal structures were made through a convenient bottom‐up approach of self‐assembly, which is facile and cost effective. MSCs cultured on the oriented structures were highly aligned and extended highly oriented thick lamellipodia. Moreover, the oriented substrates cracked along the lateral boundary of the cells, suggesting that a strong cell‐substrate interaction was induced by the response of MSCs to the oriented topography. These features of the oriented elliptical topography indicated their promising value in stem cell research and tissue engineering.  相似文献   

13.
With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll‐to‐roll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films are at the point, where transfer from the laboratory to a more production‐oriented environment is within reach. In this review, we aim at giving an overview of some of the R2R‐compatible techniques that can be used in such a transfer, as well the current status of R2R application within some of the existing research fields such as organic photovoltaics, organic thin film transistors, light‐emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
The cylinder‐to‐gyroid transition in a concentrated solution of polystyrene‐block‐polyisoprene in dibutyl phthalate has been studied using rheology and small angle X‐ray scattering. Following an appropriate temperature quench, the oriented cylinder phase transforms to the gyroid structure epitaxially. Remarkably, an intermediate state appears for a deep quench, whereas for a shallow quench the transition proceeds directly; the intermediate state exhibits scattering signatures consistent with a hexagonally perforated layer structure.  相似文献   

15.
We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field‐flow fractionation. The electrode configuration is such that multiple finite‐sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady‐state levitation height.  相似文献   

16.
Summary: By utilizing the interaction of α‐cyclodextrin (α‐CD) with dodecyl side chains in polymers of x mol‐% dodecyl‐modified poly(acrylic acid) (p(AA/C12(x))), systems that undergo gel‐to‐sol and sol‐to‐gel transitions were successfully constructed. Rheological experiments indicated that addition of α‐CD to the hydrogel of p(AA/C12(5)) caused a drastic decrease in the viscosity, while addition of oligo(α‐CD) to the solution of p(AA/C12(2)) led to a remarkable increase in the viscosity.

Photographs for a gel‐to‐sol transition upon addition of α‐CD to 5.0 g · L−1 p(AA/C12(5)).  相似文献   


17.
Reversible noncovalent but sequence‐dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite‐modified oligonucleotides has enabled sequence‐specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self‐assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid‐DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence‐dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information‐processing systems.  相似文献   

18.
《Electrophoresis》2017,38(8):1206-1216
Cell‐on‐a‐chip systems have become promising devices to study the effectiveness of new anticancer drugs recently. Several microdevices for liver cancer culture and evaluation of the drug cytotoxicity have been reported. However, there are still no proven reports about high‐throughput and simple methods for the evaluation of drug cytotoxicity on liver cancer cells. The paper presents the results of the effects of the anticancer drug (5‐fluorouracil, 5‐FU) on the HepG2 spheroids as a model of liver cancer. The experiments were based on the long‐term 3D spheroid culture in the microfluidic system and monitoring of the effect of 5‐FU at two selected concentrations (0.5 mM and 1.0 mM). Our investigations have shown that the initial size of the spheroids has influence on the drug effect. With the increase of the spheroids diameter, the drug resistance (for the two tested 5‐FU concentrations) decreases. This phenomenon was observed both through cells metabolism analysis, as well as changes in spheroids sizes. In our research, we have shown that the lower 5‐FU (0.5 mM) concentration causes higher decrease in HepG2 spheroids viability. Moreover, due to the microsystem construction, we observe the drug resistance effect (10th day of culture) regardless of the initial size of the created spheroids and the drug concentration.  相似文献   

19.
Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure‐driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single‐cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.  相似文献   

20.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号