首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

2.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

3.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

4.
The title compounds, O‐benzyl‐N‐(benzyl­oxy­carbonyl)­threonyl‐2,N‐dimethyl­alanin­anilide, C30H35N3O5, and methyl (4R)‐4‐benzyl­oxy‐N‐(benzyl­oxy­carbonyl)­valyl‐2‐(methyl­alanyl)prolinate, C30H39N3O7, were obtained from the `azirine coupling' of the corresponding protected amino acids with 2,2,N‐trimethyl‐2H‐azirin‐3‐amine and methyl (4R)‐4‐(benzyl­oxy)‐N‐(2,2‐dimethyl‐2H‐azirin‐2‐yl)prolinate, respectively. The Aib unit in each mol­ecule has the greatest turn‐ or helix‐inducing effect on the mol­ecular conformation. Inter­molecular N—H⋯O inter­actions link the mol­ecules of the tripeptide into sheets and those of the dipeptide into extended chains.  相似文献   

5.
In the two isomorphous title compounds, viz. tris­[2,2′‐bi(4,5‐di­hydro‐1,3‐oxazole)‐κ2N,N′]copper(II) diperchlorate, [Cu(C6H8N2O2)3](ClO4)2, (I), and tris­[2,2′‐bi(4,5‐di­hydro‐1,3‐oxazole)‐κ2N,N′]­nickel(II) diperchlorate, [Ni(C6H8N2O2)3](ClO4)2, (II), the MII ions each have a distorted octahedral coordination geometry formed via six N atoms from three 2,2′‐bioxazoline ligands. For each ligand, the two five‐membered rings are nearly coplanar. It is noteworthy that the Jahn–Teller effect is stronger in (I) than in (II). The three‐dimensional supramolecular structures of (I) and (II) are formed via weak hydrogen‐bonding interactions between O atoms from per­chlorate anions and H atoms from 2,2′‐bioxazoline ligands.  相似文献   

6.
Large Stokes‐shift coumarin dyes with an O‐phosphorylated 4‐(hydroxymethyl)‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline fragment emitting in the blue, green, and red regions of the visible spectrum were synthesized. For this purpose, N‐substituted and O‐protected 1,2‐dihydro‐7‐hydroxy‐2,2,4‐trimethylquinoline was oxidized with SeO2 to the corresponding α,β‐unsaturated aldehyde and then reduced with NaBH4 in a “one‐pot” fashion to yield N‐substituted and 7‐O‐protected 4‐(hydroxymethyl)‐7‐hydroxy‐2,2‐dimethyl‐1,2,3,4‐tetrahydroquinoline as a common precursor to all the coumarin dyes reported here. The photophysical properties of the new dyes (“reduced coumarins”) and 1,2‐dihydroquinoline analogues (formal precursors) with a trisubstituted C=C bond were compared. The “reduced coumarins” were found to be more photoresistant and brighter than their 1,2‐dihydroquinoline counterparts. Free carboxylate analogues, as well as their antibody conjugates (obtained from N‐hydroxysuccinimidyl esters) were also prepared. All studied conjugates with secondary antibodies afforded high specificity and were suitable for fluorescence microscopy. The red‐emitting coumarin dye bearing a betaine fragment at the C‐3‐position showed excellent performance in stimulation emission depletion (STED) microscopy.  相似文献   

7.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

8.
The design and synthesis of polymeric coordination compounds of 3d transition metals are of great interest in the search for functional materials. The coordination chemistry of the copper(II) ion is of interest currently due to potential applications in the areas of molecular biology and magnetochemistry. A novel coordination polymer of CuII with bridging N,N′‐bis(2‐hydroxyphenyl)‐2,2‐dimethylpropane‐1,3‐diamine (H2L‐DM) and dicyanamide (dca) ligands, catena‐poly[[[μ2‐2,2‐dimethyl‐N,N′‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine‐1:2κ6O,N,N′,O′:O,O′]dicopper(II)]‐di‐μ‐dicyanamido‐1:2′κ2N1:N5;2:1′κ2N1:N5], [Cu2(C19H20N2O2)(C2N3)2]n, has been synthesized and characterized by CHN elemental analysis, IR spectroscopy, thermal analysis and X‐ray single‐crystal diffraction analysis. Structural studies show that the CuII centres in the dimeric asymmetric unit adopt distorted square‐pyramidal geometries, as confirmed by the Addison parameter (τ) values. The chelating characteristics of the L‐DM2− ligand results in the formation of a CuII dimer with a double phenolate bridge in the asymmetric unit. In the crystal, the dimeric units are further linked to adjacent dimeric units through μ1,5‐dca bridges to produce one‐dimensional polymeric chains.  相似文献   

9.
Dichloro­(4,4′‐dipentyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C20H28N2)], adopts a discrete π–π stacking structure, where the alkyl chains are located in a random manner. In contrast, dichloro­(4,4′‐diheptyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C24H36N2)], forms a layer structure comprised of alkyl chain layers and paired coordination sites, as observed for analogous complexes with longer alkyl chains.  相似文献   

10.
Novel thermoresponsive double‐hydrophilic fluorinated block copolymers were successfully synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Poly[N‐(2,2‐difluoroethyl)acrylamide] (P2F) was synthesized via RAFT polymerization of N‐(2,2‐difluoroethyl)acrylamide (M2F) using 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methylpropionic acid (DMP) as the chain transfer agent (CTA) and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The resulting P2F macroCTA was further chain extended with N‐(2‐fluoroethyl)acrylamide (M1F) to yield poly{[N‐(2,2‐difluoroethyl)acrylamide]‐b‐[N‐(2‐fluoroethyl)acrylamide]} (P2F‐b‐P1F) block copolymers with different lengths of the P1F block. Molecular weight and molecular weight distribution were determined by gel permeation chromatography. The average molecular weight (Mn) of the resulting polymers ranged from 2.9 × 104 to 5.8 × 104 depending on the length of the P1F block. The molecular weight distribution was low (Mw/Mn = 1.11–1.19). Turbidimetry by UV‐Visble (UV‐Vis) spectroscopy, dynamic light scattering, and in situ temperature‐dependent 1H NMR measurements demonstrated that the P2F block underwent a thermal transition from hydrophilic to hydrophobic, which in turn induced self‐assembly from unimers to aggregates. Transmission electron microscopy studies demonstrated that polymeric aggregates formed from an aqueous solution of P2F‐b‐P1F at 60 °C were disrupted by cooling down to 20 °C and regenerated by heating to 60 °C. Temperature‐triggered release of a model hydrophobic drug, coumarin 102, was also demonstrated. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
The two title complexes, catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐azido], [Co(C17H16N2O2)(N3)]n, (I), and catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six‐coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N′‐bis­(salicyl­idene)propane‐1,3‐diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n in (II) running along the c axis.  相似文献   

12.
The heteroscorpionate ligand 2,2‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,1‐diphenylethanol, C24H26N4O, features in the solid state an intramolecular O—H…N hydrogen bond. A heteroscorpionate tungsten complex, cis‐[2,2‐bis(3,5‐dimethylpyrazolyl)‐1,1‐diphenylethanolato]chloridodioxidotungsten(VI) tetrahydrofuran monosolvate, [W(C24H25N4O)ClO2]·C4H8O, was prepared by the simple mixing of solutions of the ligand and WOCl4 in tetrahydrofuran. The tungsten complex was isolated after standing for several weeks. The complex exhibits a κ3N,N′,O‐coordination of the ligand. This simple synthetic procedure allows access to the cis isomer in high yield without additional purification steps. The Hirshfeld surface analysis shows a change of the intermolecular contacts due to the coordination of the WO2Cl unit with the ligand molecule.  相似文献   

13.
In the title potential O,N,N′,O′‐tetradentate Schiff base ligand {systematic name: 2,2′‐[pentane‐1,5‐diylbis(nitrilomethylidyne)]diphenol}, C19H22N2O2, the mutual orientation of the three planar fragments determines the conformation of the molecule. The dihedral angles between the planes of the two salicylidene groups and the plane of the central extended pentane chain are 78.4 (2) and 62.0 (3)°, and the angle between the terminal ring planes is 55.4 (1)°. Strong intramolecular O—H...N hydrogen bonds close almost‐planar six‐membered rings, and the O—H bonds are elongated as a result of hydrogen‐bond formation.  相似文献   

14.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

15.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

16.
The title compound, [Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2, is a two‐component host–guest material. The 2,2′‐di­thio­bis(pyridine N‐oxide) molecule has crystallographic twofold symmetry. The metal complex lies on an inversion centre and associates via C—H?S interactions into chains which thread the 2,2′‐di­thio­bis­(pyridine N‐oxide) lattice in perpendicular directions. Hydro­gen bonds exist between the water mol­ecules of the di­aqua­magnesium units and the N—O groups of the host lattice.  相似文献   

17.
The title compound, [Pt(C6H10NO2)(C5H14N2)]2(SO4), crystallizes with two cations in the asymmetric unit. The two complex cations, which have a square‐planar PtII coordination, are chemically identical but differ slightly in the conformations of their amine groups. A neutral complex, viz. (2,2‐di­methyl‐1,3‐propane­di­amine‐κ2N,N′)bis(2‐piperidine­carb­oxyl­ato‐κN)platinum(II), is shown to form in solution and to change rapidly into the title compound.  相似文献   

18.
The title compounds, {4,4′‐di­bromo‐2,2′‐[1,3‐propane­diyl­bis(nitrilo­methyl­idyne‐N)]­diphenolato‐O,O′}nickel(II), [Ni(C17­H14­Br2­N2O2)], and {4,4′‐di­chloro‐2,2′‐[1,3‐pro­pane­diyl­bis­(ni­trilo­methyl­idyne‐N)]­di­phen­ol­ato‐O,O′}­copper(II), [Cu­(C17­H14­Cl2­N2O2)], lie on crystallographic twofold axes. In both structures, the metal coordination sphere is a tetrahedrally distorted square plane formed by the four‐coordinate N2O2 donor set of the Schiff base imine–phenol ligands. In the Ni compound, the Ni—O and Ni—N distances are 1.908 (3) and 1.959 (4) Å, respectively, while in the Cu compound, the Cu—O and Cu—N distances are 1.907 (2) and 1.960 (2) Å, respectively. The two Schiff base moieties, which themselves are nearly planar, are inclined at an angle of 29.26 (7)° for the Ni compound and 29.26 (5)° for the Cu compound.  相似文献   

19.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

20.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号