首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multidrug resistance is recognized as one of the main reasons leading to the failure of chemotherapy. Studies have shown that glutathione S‐transferase inhibitors could be regarded as multidrug resistance reversal agents. Herein, a method of applying enzyme immobilization, molecular docking, and high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry was employed to screen glutathione S‐transferase inhibitors from natural products. Magnetic mesoporous silica microspheres were synthesized and modified with a poly(dopamine) layer, which has a large quantity of amino, enabling further non‐covalent binding with glutathione S‐transferase. Moreover, the immobilization conditions, namely, potential of hydrogen, catalase concentration, reaction temperature and reaction time, were optimized. In total, six potential compounds were isolated and identified from Perilla frutescens (L.) Britt leaves and green tea and molecular docking was applied to identify the binding site. Rosmarinic acid, (?)‐epigallocatechin‐3‐O‐gallate and (?)‐epicatechin‐3‐gallate showed higher binding affinity than the compounds, and their half maximal inhibitory concentration values were further determined. The results suggested that this proposed method was effective and convenient for identifying glutathione S‐transferase inhibitors from natural products.  相似文献   

2.
A new three‐dimensional reference interaction site model (3D‐RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D‐FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D‐RISM program has a limitation on the number of parallelizations because of the limitations of the slab‐type 3D‐FFT. The volumetric 3D‐FFT relieves this limitation drastically. We tested the 3D‐RISM calculation on the large and fine calculation cell (20483 grid points) on 16,384 nodes, each having eight CPU cores. The new 3D‐RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D‐RISM program is effective to analyze the hydration properties of the large biomolecular systems. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure‐based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled receptor structures requires fast and reliable docking techniques capable of dealing with structural inaccuracies in protein models. Here, we present Q‐DockLHM, a method for low‐resolution refinement of binding poses provided by FINDSITELHM, a ligand homology modeling approach. We compare its performance to that of classical ligand docking approaches in ligand docking against a representative set of experimental (both holo and apo) as well as theoretically modeled receptor structures. Docking benchmarks reveal that unlike all‐atom docking, Q‐DockLHM exhibits the desired tolerance to the receptor's structure deformation. Our results suggest that the use of an evolution‐based approach to ligand homology modeling followed by fast low‐resolution refinement is capable of achieving satisfactory performance in ligand‐binding pose prediction with promising applicability to proteome‐scale applications. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
In this article, an enhanced version of GalaxyDock protein–ligand docking program is introduced. GalaxyDock performs conformational space annealing (CSA) global optimization to find the optimal binding pose of a ligand both in the rigid‐receptor mode and the flexible‐receptor mode. Binding pose prediction has been improved compared to the earlier version by the efficient generation of high‐quality initial conformations for CSA using a predocking method based on a beta‐complex derived from the Voronoi diagram of receptor atoms. Binding affinity prediction has also been enhanced by using the optimal combination of energy components, while taking into consideration the energy of the unbound ligand state. The new version has been tested in terms of binding mode prediction, binding affinity prediction, and virtual screening on several benchmark sets, showing improved performance over the previous version and AutoDock, on which the GalaxyDock energy function is based. GalaxyDock2 also performs better than or comparable to other state‐of‐the‐art docking programs. GalaxyDock2 is freely available at http://galaxy.seoklab.org/softwares/galaxydock.html . © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We present a Lamarckian genetic algorithm (LGA) variant for flexible ligand‐receptor docking which allows to handle a large number of degrees of freedom. Our hybrid method combines a multi‐deme LGA with a recently published gradient‐based method for local optimization of molecular complexes. We compared the performance of our new hybrid method to two non gradient‐based search heuristics on the Astex diverse set for flexible ligand‐receptor docking. Our results show that the novel approach is clearly superior to other LGAs employing a stochastic optimization method. The new algorithm features a shorter run time and gives substantially better results, especially with increasing complexity of the ligands. Thus, it may be used to dock ligands with many rotatable bonds with high efficiency. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
Molecular docking of small‐molecules is an important procedure for computer‐aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph‐based optimization algorithm for assignment of the near‐optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
8.
Protein-ligand docking is an essential process that has accelerated drug discovery. How to accurately and effectively optimize the predominant position and orientation of ligands in the binding pocket of a target protein is a major challenge. This paper proposed a novel ligand binding pose search method called FWAVina based on the fireworks algorithm, which combined the fireworks algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon local search method adopted in AutoDock Vina to address the pose search problem in docking. The FWA was used as a global optimizer to rapidly search promising poses, and the Broyden-Fletcher-Goldfarb-Shannon method was incorporated into FWAVina to perform an exact local search. FWAVina was developed and tested on the PDBbind and DUD-E datasets. The docking performance of FWAVina was compared with the original Vina program. The results showed that FWAVina achieves a remarkable execution time reduction of more than 50 % than Vina without compromising the prediction accuracies in the docking and virtual screening experiments. In addition, the increase in the number of ligand rotatable bonds has almost no effect on the efficiency of FWAVina. The higher accuracy, faster convergence and improved stability make the FWAVina method a better choice of docking tool for computer-aided drug design. The source code is available at https://github.com/eddyblue/FWAVina/.  相似文献   

9.
A novel enhanced conformational sampling method, virtual‐system‐coupled adaptive umbrella sampling (V‐AUS), was proposed to compute 300‐K free‐energy landscape for flexible molecular docking, where a virtual degrees of freedom was introduced to control the sampling. This degree of freedom interacts with the biomolecular system. V‐AUS was applied to complex formation of two disordered amyloid‐β (Aβ30–35) peptides in a periodic box filled by an explicit solvent. An interpeptide distance was defined as the reaction coordinate, along which sampling was enhanced. A uniform conformational distribution was obtained covering a wide interpeptide distance ranging from the bound to unbound states. The 300‐K free‐energy landscape was characterized by thermodynamically stable basins of antiparallel and parallel β‐sheet complexes and some other complex forms. Helices were frequently observed, when the two peptides contacted loosely or fluctuated freely without interpeptide contacts. We observed that V‐AUS converged to uniform distribution more effectively than conventional AUS sampling did. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
11.
Structure‐based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this “ab initio” approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT‐Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD‐E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding‐homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org . © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high‐performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high‐throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24‐run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.  相似文献   

13.
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is presented for geometry optimization calculations and one‐electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi‐Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two‐dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O (N 5) step such as calculations of occupied–occupied and virtual–virtual blocks of MP2 one‐particle density matrix and MP2 two‐particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C60@C60H28 (144 atoms, 1820 atomic orbitals (AOs) for def2‐SVP basis set, and 3888 AOs for def2‐TZVP), nanographene dimer (C96H24)2 (240 atoms, 2928 AOs for def2‐SVP, and 6432 AOs for cc‐pVTZ), and trp‐cage protein 1L2Y (304 atoms and 2906 AOs for def2‐SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
High‐throughput experimentation (HTE) represents a promising and versatile approach for polyurethane (PU) research as a tool to rapidly screen and characterize a large number of samples in an automated way. To realize a unique HTE workflow for the research and development of PU elastomers (PUEs), the use of parallel automated formulation and coating platforms at Flamac were explored. To evaluate the applicability of HTE for PUEs, four different PU systems were investigated with different reactivities and viscosities. All prepared PUEs were evaluated by conventional physical testing methods measuring the E‐modulus, tensile‐elongation and the hardness properties revealing similar trends as conventionally prepared PUEs indicating the viability of the HTE approach. In addition, the properties of the PUEs were also investigated using downscaled microtensile bars as well as depth‐sensing indentation, again, revealing similar trends. With this proof of principle study, we demonstrated for the first time that HTE can also be extended to polymeric materials based on high reactive and viscous raw materials in combination with complex technologies. The reported results provide a basis for the use of HTE approaches for preparing, screening and characterizing large numbers of PUEs for R&D purposes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
16.
The linear‐scaling divide‐and‐conquer (DC) quantum chemical methodology is applied to the density‐functional tight‐binding (DFTB) theory to develop a massively parallel program that achieves on‐the‐fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC‐DFTB potential energy surface are implemented to the program called DC‐DFTB‐K. A novel interpolation‐based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC‐DFTB‐K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC‐DFTB‐K program, a single‐point energy gradient calculation of a one‐million‐atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
In this study, we evaluated the applicability of ligand‐based and structure‐based models to quantitative affinity predictions and virtual screenings for ligands of the β2‐adrenergic receptor, a G protein‐coupled receptor (GPCR). We also devised and evaluated a number of consensus models obtained through partial least square regressions, to combine the strengths of the individual components. In all cases, the bioactive conformation of each ligand was derived from molecular docking at the crystal structure of the receptor. We identified the most effective models applicable to the different scenarios, in the presence or in the absence of a training set. For ranking the affinity of closely related analogs when a training set is available, a ligand‐based consensus model (LI‐CM) seems to be the best choice, while the structure‐based MM‐GBSA score seems the best alternative in the absence of a training set. For virtual screening purposes, the structure‐based MM‐GBSA score was found to be the method of choice. Consensus models consistently had performances superior or close to those of the best individual components, and were endowed with a significantly increased robustness. Given multiple models with no a priori knowledge of their predictive capabilities, constructing a consensus model ensures results very close to those that the best model alone would have yielded. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

18.
Scoring functions are a critically important component of computer‐aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multigrid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per‐residue basis in a way that resembles a known reference. The grid‐based FPS method is much faster than its Cartesian‐space counterpart, which makes it computationally tractable for on‐the‐fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co‐crystal structures, for crossdocking, and for database enrichment, and (iii) grid‐based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method is available in the program DOCK6. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The Shift‐and‐invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density‐functional based tight‐binding (DFTB) Hamiltonian and overlap matrices for single‐wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPs is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time‐to‐solution at the strong scaling limit. A parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster‐type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re‐docking of X‐ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号