首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The fabrication of antibody thin film using both protein G and oligonucleotide was carried out by self-assembly (SA) technique for immunosensor. A mixture of 11-mercaptoundecanoic acid (MUA) and oligonucleotide with thiol (SH) end group was self-assembled of gold (Au) surface for two-dimensional (2D) configuration. Protein G was chemically adsorbed on the 11-MUA surface, and then the antibody was immobilized on the protein G region. On the immobilized single-stranded DNA, the complementary DNA–antibody conjugate was hybridized for the oriented immobilization of antibody. The formation of self-assembled 11-MUA/oligonucleotide layer, protein G immobilization, antibody layer, and antigen binding was investigated using surface plasmon resonance (SPR). The topographies of the fabricated surfaces were observed by atomic force microscopy (AFM). When compared with the amount of antigen binding on the antibody thin film fabricated by protein G only, the proposed biosurface fabricated with both protein G and oligonucleotide showed better binding capacity, which implicates the improvement of the detection limit.  相似文献   

2.
Dual polarization interferometry (DPI) is used for a detailed study of antibody immobilization with and without orientation control, using prostate specific antigen (PSA) and its antibody as model. Thiol modified DPI chips were activated by a heterobifunctional cross-linker (sulfo-GMBS). PSA antibody was either directly immobilized via covalent binding or coupled via the Fc-fragment to protein G covalently attached to the activated chip. The direct covalent binding leads to a random antibody orientation and the coupling through protein G leads to an end-on orientation. Ethanolamine (ETH) was used to block remaining active sites following the direct antibody immobilization and protein G immobilization. A homobifunctional cross-linker (BS3) was used to stabilize the antibody layer coupled on protein G. DPI provides a real-time measurement of the stepwise molecular binding processes and gives detailed geometrical and structural values of each layer, i.e., thickness, mass, and density. These values evidence the end-on orientation of closely packed antibody on protein G layer and reveal structural effects of ETH blocking/deactivation and BS3 stabilization. With the end-on immobilized antibody, PSA at 10 pg/mL can be detected by DPI through a sandwich complex that satisfies the clinical requirement (assuming <30 pg/mL as clinically safe). However, the randomly immobilized antibody failed to detect PSA at 1 ng/mL. In a parallel study using surface plasmon resonance (SPR) spectroscopy, random and end-on antibody immobilization on streptavidin-modified gold surface was evaluated to further validate the importance of antibody orientation control. With the closely packed antibody layer on protein G surface, SPR can also detect PSA at 10 pg/mL.  相似文献   

3.
Kim YE  Yi SY  Lee CS  Jung Y  Chung BH 《The Analyst》2012,137(2):386-392
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of immuno-captured target protein efficiently complements conventional immunoassays by offering rich molecular information such as protein isoforms or modifications. Direct immobilization of antibodies on MALDI solid support enables both target enrichment and MS analysis on the same plate, allowing simplified and potentially multiplexing protein MS analysis. Reliable on-chip immuno-MALDI-TOF MS for multiple biomarkers requires successful adaptation of antibody array biochips, which also must accommodate consistent reaction conditions on antibody arrays during immuno-capture and MS analysis. Here we developed a facile fabrication process of versatile antibody array biochips for reliable on-chip MALDI-TOF-MS analysis of multiple immuno-captured proteins. Hydrophilic gold arrays surrounded by super-hydrophobic surfaces were formed on a gold patterned biochip via spontaneous chemical or protein layer deposition. From antibody immobilization to MALDI matrix treatment, this hydrophilic/phobic pattern allowed highly consistent surface reactions on each gold spot. Various antibodies were immobilized on these gold spots both by covalent coupling or protein G binding. Four different protein markers were successfully analyzed on the present immuno-MALDI biochip from complex protein mixtures including serum samples. Tryptic digests of captured PSA protein were also effectively detected by on-chip MALDI-TOF-MS. Moreover, the present MALDI biochip can be directly applied to the SPR imaging system, by which antibody and subsequent antigen immobilization were successfully monitored.  相似文献   

4.
Immobilized antibodies with oriented and homogeneous patterns are crucial to solid-phase molecular recognition assay. Antibody binding protein-based immobilization can effectively present the desired antibodies. However, steadily installing the stromatoid protein with site-specific attachment manner onto a matrix surface remains to be elucidated. In this study, we present an optimal protocol to tightly attach an immunoglobulin G (IgG)-binding protein (Z-domain) through covalent incorporation of Cys-tag and maleimide group onto polystyrene surface to guarantee site-specific, oriented, and irreversible attachment, resulting in a highly efficient platform for three-dimensional IgG immobilization. The actual IgG-binding characteristic of immobilized Z-Cys was investigated by employing affinity chromatography and size exclusion chromatography. And the efficacy and potential of this platform was demonstrated by applying it to the analysis of interaction between rabbit anti-HRP IgG and its binding partner HRP. The proposed approach may be an attractive strategy to construct high performance antibody arrays and biosensors given that the antibody is compatible with the Z-domain.  相似文献   

5.
A systematic evaluation of the effects of antibody immobilization strategy on the binding efficiency and selectivity (e.g., ability to distinguish between specific and nonspecific interactions) of immunosurfaces prepared with F(ab') antibody fragments of rabbit Immunoglobulin G (IgG) is described. F(ab') was attached to gold surfaces either (1) directly via the formation of a gold-thiolate bond or (2) indirectly through a series of a bifunctional linkers containing an alkane chain or ethylene glycol spacer. Immobilization of F(ab') via the sulfhydryl reactive group located opposite the antigen binding site ensured optimum orientation of the antigen binding site. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) were used to confirm surface modification with the bifunctional linkers and antibody immobilization, respectively. Binding efficiency assays performed with SPR indicated that increasing the length of the linker increased the antigen binding efficiency. Atomic force microscopy (AFM) adhesion force measurements indicated that AFM probes functionalized with directly immobilized F(ab') more effectively discriminated between specific and nonspecific surface-bound proteins than probes modified indirectly via linker-immobilized F(ab'). In addition, a greater number of antibody-antigen binding events were observed with directly immobilized F(ab')-functionalized probes.  相似文献   

6.
Development of field-deployable methodology utilizing antigen–antibody reactions and the surface plasmon resonance (SPR) effect to provide a rapid diagnostic test for recognition of the blue tongue virus (BTV) and epizootic hemorrhage disease virus (EHDV) in wild and domestic ruminants is reported. A Spreeta chip, which utilizes microelectronic technology to implement the SPR effect, is shown to possess sufficient sensitivity and operating speed to detect either BTV and EHVD antigens or antibodies in real time. The biosensor consists of an outer active surface layer comprised of either an antibody or antigen immobilized by covalent bonds through several other organic layers including a self assembled monolayer to a gold surface. Parallel experiments were run on the biosensor surface using either a home-built high resolution SPR instrument or a low resolution solid state Spreeta SPR chip. Both instruments were capable of monitoring the antigen–antibody reaction used to selectively detect the presence of BTV and EHDV viral pathogens. Results for the antibody and antigen reactive layers with antigen or antibody solutions as well as the modeling of these layers are discussed. The characteristics of these biosensors – specificity and time of reaction – were assessed. The antibody surface biosensors exhibited a high degree of specificity, even when using low resolution instrumentation. The time of analysis was under 20 min, which was the arbitrary exposure time.  相似文献   

7.
An automated biomolecular interaction analysis instrument(BIAcore)based on surface plasmon resonance(SPR)has been used to determine human immunoglobulin G(IgG) in real time.Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran-modified gold film surface.The samples of human IgG prepared in HBS buffer were poured over the immpbilized surface.The signal amplification antibody was applied to amplify the response signal.After each measurement,the surface was regenerated with 0.1mol/L H3PO4.The assay was rapid,requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding,antibody amplification and regeneration.The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmol/L.The same antibody immobilized surface could be used for more than 110 cycles of binding,amplification and regeneration.The results demonstrate that the sensitivity,specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.  相似文献   

8.
This review describes the exploitation of exclusively optical surface plasmon resonance (SPR) biosensors for the direct and indirect detection of pathogenic microorganisms in food chains and the environment. Direct detection is, in most cases, facilitated by the use of defined monoclonal or polyclonal antibodies raised against (a part of) the target pathogenic microorganisms. The antibodies were immobilized to a solid phase of the sensor to capture the microbe from the sample. Alternatively, antibodies were used in an inhibition-like assay involving incubation with the target organism prior to analysis of nonbound antibodies. The free immunoglobins were screened on a sensor surface coated with either purified antigens or with Fc or Fab binding antibodies. Discussed examples of these approaches are the determination of Escherichia coli O1 57:H7, Salmonella spp., and Listeria monocytogenes. Another direct detection strategy involved SPR analysis of polymerase chain reaction products of Shiga toxin-2 genes reporting the presence of E. coli O157:H7 in human stool. Metabolic products have been exploited as biomarkers for the presence of a microbial agent, such as enterotoxin B and a virulence factor for the occurrence of Staphylococcus aureus and Streptococcus suis, respectively. Indirect detection, on the other hand, is performed by analysis of a humoral immune response of the infected animal or human. By immobilization of specific antigenic structures, infections with Herpes simplex and human immunodeficiency viruses, Salmonella and Treponema pallidum bacteria, and Schistosoma spp. parasites were revealed using human, avian, and porcine sera and avian eggs. Bound antibodies were easily isotyped using an SPR biosensor to reveal the infection history of the individual. Discussed studies show the recent recognition of the suitability of this type of instrument for (rapid) detection of health-threatening microbes to food and environmental microbial safety.  相似文献   

9.
The majority of methods used to prepare immunosorbents immobilize antibodies through their reactive amino acid residues. The bound antibody activity of these immunosorbents is low. Hydrazide-based matrices couple antibodies through carbohydrate chains frequently located in the Fc region. This paper reports a comparative study of the performance of immunosorbents prepared by cyanogen bromide or hydrazide immobilization methods. The experiments utilized murine monoclonal antibodies to the human plasma proteins Factor IX or Protein C. The antibodies were immobilized at low densities to beaded agarose matrices which had similar properties. The hydrazide immunosorbents had binding efficiencies which were lower (anti-Factor IX) or up to 1.6-fold higher (anti-Protein C) than comparable cyanogen bromide coupled gels. However, there was no improvement in performance due to lower recoveries of bound protein from the hydrazide gels. Control experiments demonstrated that oxidation of antibody which is required for its coupling to hydrazide gels had no effect on antibody binding to antigen. Our results indicate that, as with cyanogen bromide coupling methods, site-directed immobilization through carbohydrate residues results in a restricted ability to bind to antigen. Both monoclonals were found to contain carbohydrate in their Fab' regions through which coupling may have occurred. The frequency of carbohydrate in the Fab region and the ability to control glycosylation at these sites are factors which may impact the utility of carbohydrate-directed immobilization of antibodies.  相似文献   

10.
Factors affecting the specific activity of immobilized antibodies and their biologically active fragments were studied with goat anti-mouse and goat anti-human immunoglobulin G. Antibodies were immobilized on HW 65 polymeric support matrix activated with carbonyldiimidazole, hydrazide and iodoacetic acid. The most significant factors influencing the specific activity of stochastic coupling of antibodies are multi-site attachment, multiple orientations and steric hindrance imposed by crowding of antibody and the size of the antigen. In oriented immobilization the specific activity is affected only by steric hindrance. The specific activity of immunosorbents prepared by immobilization of F(ab') fragments can be improved to almost 100% by limiting the amount of protein immobilization and the size of the antigen. The present study shows the protocols for optimizing immobilized antibody performance.  相似文献   

11.
A surface plasmon resonance (SPR)-based biosensor was developed for simple diagnosis of severe acute respiratory syndrome (SARS) using a protein created by genetically fusing gold binding polypeptides (GBPs) to a SARS coronaviral surface antigen (SCVme). The GBP domain of the fusion protein serves as an anchoring component onto the gold surface, exploiting the gold binding affinity of the domain, whereas the SCVme domain is a recognition element for anti-SCVme antibody, the target analyte in this study. SPR analysis indicated the fusion protein simply and strongly self-immobilized onto the gold surface, through GBP, without surface chemical modification, offering a stable and specific sensing platform for anti-SCVme detection. AFM and SPR imaging analyses demonstrated that anti-SCVme specifically bound to the fusion protein immobilized onto the gold-micropatterned chip, implying that appropriate orientation of bound fusion protein by GBP resulted in optimal exposure of the SCVme domain to the assay solution, resulting in efficient capture of anti-SCVme antibody. The best packing density of the fusion protein onto the SPR chip was achieved at the concentration of 10 μg mL−1; this density showed the highest detection response (906 RU) for anti-SCVme. The fusion protein-coated SPR chip at the best packing density had a lower limit of detection of 200 ng mL−1 anti-SCVme within 10 min and also allowed selective detection of anti-SCVme with significantly low responses for non-specific mouse IgG at all tested concentrations. The fusion protein provides a simple and effective method for construction of SPR sensing platforms permitting sensitive and selective detection of anti-SCVme antibody.  相似文献   

12.
《Analytical letters》2012,45(14):2641-2652
Abstract

A surface plasmon resonance (SPR)‐immunosensor based on nano‐size gold hollow ball (GHB) with dendritic surface has been developed for detection of Ochratoxin A (OTA). A thionine thin film was initially electropolymerized onto the SPR‐probe surface, and then anti‐OTA monoclonal antibody (anti‐OTA) was immobilized onto the SPR‐probe surface by means of GHB conjugation. The binding of target molecules onto the immobilized antibodies causes an increase in the resonant angle of the sensor chip, and the resonant angle shift was proportional to the OTA concentration in the range of 0.05–7.5 ng/ml with a detection limit of 0.01 ng/ml at a signal/noise ration of 3. A glycine‐HCl solution (pH 2.8) was used to release antigen‐antibody complexes from the biorecognition surface. Good reusability was exhibited. Moreover, spiking various levels of OTA into three milk samples was assayed using the proposed immunoassay. Analytical results show the precision of the developed immunoassay is acceptable. Compared with the conventional enzyme‐linked immunosorbent assay, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

13.
An electrochemical label-free immunosensor based on a biotinylated single-chain variable fragment (Sc-Fv) antibody immobilized on copolypyrrole film is described. An efficient immunosensor device formed by immobilization of a biotinylated single-chain antibody on an electropolymerized copolymer film of polypyrrole using biotin/streptavidin system has been demonstrated for the first time. The response of the biosensor toward antigen detection was monitored by surface plasmon resonance (SPR) and electrochemical analysis of the polypyrrole response by differential pulse voltammetry (DPV). The composition of the copolymer formed from a mixture of pyrrole (py) as spacer and a pyrrole bearing a N-hydroxyphthalimidyl ester group on its 3-position (pyNHP), acting as agent linker for biomolecule immobilization, was optimized for an efficient immunosensor device. The ratio of py:pyNHP for copolymer formation was studied with respect to the antibody immobilization and antigen detection. SPR was employed to monitor in real time the electropolymerization process as well as the step-by-step construction of the biosensor. FT-IR demonstrates the chemical copolymer composition and the efficiency of the covalent attachment of biomolecules. The film morphology was analyzed by electron scanning microscopy (SEM).Results show that a well organized layer is obtained after Sc-Fv antibody immobilization thanks to the copolymer composition defined with optimized pyrrole and functionalized pyrrole leading to high and intense redox signal of the polypyrrole layer obtained by the DPV method. Detection of specific antigen was demonstrated by both SPR and DPV, and a low concentration of 1 pg mL−1 was detected by measuring the variation of the redox signal of polypyrrole.  相似文献   

14.
The conserved nucleotide binding site (NBS), found on the Fab variable domain of all antibody isotypes, remains a not-so-widely known and unutilized site. Here, we describe a UV photo-cross-linking method (UV-NBS) that utilizes the NBS for oriented immobilization of antibodies onto surfaces, such that the antigen binding activity remains unaffected. Indole-3-butyric acid (IBA) has an affinity for the NBS with a K(d) ranging from 1 to 8 μM for different antibody isotypes and can be covalently photo-cross-linked to the antibody at the NBS upon exposure to UV light. Using the UV-NBS method, antibody was successfully immobilized on synthetic surfaces displaying IBA via UV photo-cross-linking at the NBS. An optimal UV exposure of 2 J/cm(2) yielded significant antibody immobilization on the surface with maximal relative antibody activity per immobilized antibody without any detectable damage to antigen binding activity. Comparison of the UV-NBS method with two other commonly used methods, ε-NH(3)(+) conjugation and physical adsorption, demonstrated that the UV-NBS method yields surfaces with significantly enhanced antigen detection efficiency, higher relative antibody activity, and improved antigen detection sensitivity. Taken together, the UV-NBS method provides a practical, site-specific surface immobilization method, with significant implications in the development of a large array of platforms with diverse sensor and diagnostic applications.  相似文献   

15.
The binding epitope structure of a protein specifically recognized by an antibody provides key information to prevent and treat diseases with therapeutic antibodies and to develop antibody-based diagnostics. Epitope structures of antigens can be effectively identified by the proteolytic epitope excision–mass spectrometry (MS) method, which involves (1) immobilization of monoclonal or polyclonal antibodies, e.g., on N-hydroxysuccinimide-activated sepharose, (2) affinity binding of the antigen followed by limited proteolytic digestion of the immobilized immune complex, and (3) elution and mass spectrometric analysis of the remaining affinity-bound peptide(s). In the epitope analysis of recombinant cellular bovine prion protein (bPrPC) to a monoclonal antibody (mAb3E7), we found that epitope excision experiments resulted in extensive nonspecific binding of bPrP to a standard sepharose matrix employed. Here, we show that the use of amino-modified polystyrene beads with aldehyde functionality is an efficient alternative support for antibody immobilization, suitable for epitope excision–MS, with complete suppression of nonspecific bPrP binding.  相似文献   

16.
The elimination or minimization of non-specific protein adsorption from serum is critical for the use of surface plasmon resonance (SPR) sensors for in vitro and in vivo analysis of complex biological solutions. The ultimate goals in this application are to minimize non-specific adsorption of protein and to maximize analyte signal. A reduction of the non-specific protein adsorption from serum of up to 73% compared to carboxymethylated-dextran 500 kDa (CM-dextran) was achieved following a survey of eight biocompatible polymers and 10 molecular weights of CM-dextran. These coatings minimize non-specific adsorption on the sensor while also serving as immobilization matrices for antibody fixation to the probes. Polymers including polysaccharides: CM-dextrans, CM-hyaluronic acid, hyaluronic acid, and alginic acid were investigated. Humic acid, polylactic acid, polyacrylic acid, orthopyridyldisuldfide–polyethyleneglycol–N-hydroxysuccinimide (OPSS–PEG–NHS), and a synthesized polymer; polymethacrylic-acid-co-vinyl-acetate (PMAVA) were also used. The non-specific protein adsorption reduction was measured over a 14 day period at 0 °C for each polymer. Calibration curves using some of these polymers were constructed to show the performance and low detection limit possibilities of these new antibody supports. For many of the polymers, this is the first demonstration of employment as an antibody support for an optical or surface active sensor. CM-dextran is the polymer offering the largest signal for the antigen detection. However, the biocompatible polymers demonstrate a greater stability to non-specific binding in serum. These biocompatible polymers offer different alternatives for CM-dextran.  相似文献   

17.
Using an enhanced surface plasmon resonance (SPR) immunosensor, we have determined the concentration of human complement factor 4 (C4). Antibody protein was concentrated into a carboxymethyldextran-modified gold surface by electrostatic attraction force and a simultaneous covalent immobilization of antibody based on amine coupling reaction took place. The sandwich method was applied to enhance the response signal and the specificity of antigen binding assay. The antibody immobilized surface had good response to C4 in the range of 0.02-20 μg/ml by this enhanced immunoassay. The regeneration effect by pH 2 glycine-HCl buffer was also investigated. The same antibody immobilized surface could be used more than 80 cycles of C4 binding and regeneration. In addition, the ability to determinate C4 directly from serum sample without any purification was investigated. The sensitivity, specificity and reproducibility of the enhanced immunoassay are satisfactory. The results clearly demonstrate the advantages of the enhanced SPR technique for C4 immunoassay.  相似文献   

18.
Liu X  Sun Y  Song D  Zhang Q  Tian Y  Zhang H 《Talanta》2006,68(3):1026-1031
Wavelength modulation surface plasmon resonance biosensors (SPR) using colloidal Au nanoparticles and double-linker sensing membrane enhancement are reported for determination of transferrin. The 2-mercaptoethylamine (MEA) was immobilized on the biosensor surface with traditional amine coupling method. The interaction between colloidal Au nanoparticles and MEA was investigated. The anti-transferrin was immobilized on the biosensor surface prepared with staphylococcal protein A (SPA). The interaction of the antibody and antigen was monitored in real time. The good response was obtained in the concentration range 1-20, 0.1-20 and 0.05-20 μg/mL for directly immune assay, double-linker assay and colloidal Au-amplified assay. The result clearly demonstrates that these methods may obtain significantly enhancement of sensitivity for the wavelength modulation SPR biosensor.  相似文献   

19.
A procedure was developed for oriented immobilization of monoclonal antibodies on a solid support. The technique involves the specific oligosaccharide-directed covalent modification of the monoclonal antibody (mAb) with the chelating peptide, Lys-Gly-(His)6, in conjunction with immobilized metal ion affinity chromatography. Chelating peptide-mAb conjugates with a molar ratio of 2.2 retained full antigen binding activity. On immobilization of the modified antibodies on a nickel affinity resin, the molar antigen binding ratio was 1.4. The high antigen binding capacity is indicative of oriented immobilization providing maximum access for the antigen. The described method can be used for the preparation of high-capacity immunosorbents for affinity chromatography and it is applicable for all immunoglobulin classes.  相似文献   

20.
Determination of sulfamethazine in milk by biosensor immunoassay   总被引:2,自引:0,他引:2  
A biosensor based on surface plasmon resonance (SPR) measurement was developed for use in an immunoassay for detection of sulfamethazine (SMZ) in milk. The biospecific surface was a carboxymethyl dextran-modified gold-surface sensor chip to which SMZ was covalently bound. The assay was based on inhibition of the binding of polyclonal antibodies to immobilized SMZ by SMZ in the sample. The SPR response changed inversely in relation to the antibiotic concentration in the sample. Calibration curves were constructed for SMZ in buffer and in milk at a concentration which included the maximum residue limit (0 to 200 micrograms/kg). The analysis time per sample varied from 8 to 30 min. Different flow rates and antibodies were modified alternatively during the study to assess their influence on the performance of the assay. The active antibody concentration was calculated at approximately 1880 and 180 nM for the antibody anti-SMZ 1 and the antibody anti-SMZ 2, respectively. No cross-reactivity of antibodies with other antibiotics was found. Under optimal conditions, the detection limits in milk for SMZ were 8 and 1.7 micrograms/kg, respectively, for antibody 1 and antibody 2, at a flow rate of 20 microL/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号