首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Fu L  Wei G  Hu J  Zhao X  Liu X  Li Y 《Journal of separation science》2008,31(16-17):2932-2938
A new method for the determination of four aromatic amines in water samples was developed by using dispersive liquid-liquid microextraction (DLLME) technique combined with HPLC-variable wavelength detection (HPLC-VWD). In this extraction method, 0.50 mL methanol (as dispersive solvent) containing 25.0 microL tetrachloroethane (as extraction solvent) was rapidly injected by a syringe into 5.00 mL water sample. Accordingly, a cloudy solution was formed. After centrifugation for 2 min at 4000 rpm, the fine droplets of the tetrachloroethane containing the analytes were sedimented in the bottom of the conical test tube (7+/-0.2 microL). Then, 5.0 microL of the settled phase was determined by HPLC-VWD. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time, and salt concentration were optimized. Under the optimum conditions, the enrichment factors ranged from 41.3 to 94.5. Linearity was observed in the range of 5-5000 ng/mL. The LODs based on S/N of 3 ranged from 0.8 to 1.8 ng/mL. The RSDs (for 400 ng/mL of p-toluidine and o-chloroaniline, 100 ng/mL of p-chloroaniline and p-bromoaniline) varied from 4.1 to 5.3% (n=6). The water samples collected from rivers and lakes were successfully analyzed by the proposed method and the relative recoveries were in the range of 85.4-111.7% and 90.2-101.3%, respectively.  相似文献   

2.
SPE combined with dispersive liquid–liquid microextration was used for the extraction of ultra‐trace amounts of benzodiazepines (BZPs) including, diazepam, midazolam, and alprazolam, from ultra‐pure water, tap water, fruit juices, and urine samples. The analytes were adsorbed from large volume samples (60 mL) onto octadecyl silica SPE columns. After the elution of the desired compounds from sorbents with 2.0 mL acetone, 0.5 mL of eluent containing 40.0 μL chloroform was injected rapidly into 4.5 mL pure water. After extraction and centrifugation, 2 μL of the sedimented phase was injected into a GC equipped with a flame ionization detector. Several parameters affecting this process were investigated and optimized. Under the optimal conditions, LODs ranged from 0.02 to 0.05 μg/L, a linear dynamic range of 0.1–100 μg/L and relative SDs in the range of 4.4–10.7% were attained. Very high preconcentration factors ranging from 3895–7222 were achieved. The applicability of the method for the extraction of BZPs from different types of complicated matrices, such as tap water, fruit juices, and urine samples, was studied. The obtained results reveal that the proposed method is a good technique for the extraction and determination of BZPs in complex matrices.  相似文献   

3.
A salting-out assisted liquid extraction coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system combined with high-performance liquid chromatography with diode-array detection (HPLC–DAD) was developed for the extraction and determination of sulfonamides in solid tissue samples. After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, an aliquot of 1 mL of the acetonitrile extract containing a small amount of dichloromethane (250–400 μL) was alkalinized with diethylamine. The clear organic extract obtained by centrifugation was used as a donor phase and then a small amount of water (40–55 μL) could be used as an acceptor phase to back-extract the analytes in the water/acetonitrile/dichloromethane ternary component system. In the back-extraction procedure, after mixing and centrifuging, the sedimented phase would be water and could be withdrawn easily into a microsyringe and directly injected into the HPLC system. Under the optimal conditions, recoveries were determined for swine muscle fortified at 10 ng/g and quantification was achieved by matrix-matched calibration. The calibration curves of five sulfonamides showed linearity with the coefficient of estimation above 0.998. Relative recoveries for the analytes were all from 96.5 to 109.2% with relative standard deviation of 2.7–4.0%. Preconcentration factors ranged from 16.8 to 30.6 for 1 mL of the acetonitrile extract. Limits of detection ranged from 0.2 to 1.0 ng/g.  相似文献   

4.
A simple and solvent-minimized procedure for the determination of six commonly found synthetic polycyclic musks in aqueous samples using ultrasound-assisted dispersive liquid–liquid microextraction (UA-DLLME) coupled with gas chromatography–mass spectrometry (GC-MS) is described. The parameters affecting the extraction efficiency of analytes from water samples were systematically investigated. The best extraction conditions involved the rapid injection of a mixture of 1.0 mL of isopropyl alcohol (as a dispersant) and 10 μL of carbon tetrachloride (as an extractant) into 10 mL of water containing 0.5 g of sodium chloride in a conical-bottom glass tube. After ultrasonication for 1.0 min and centrifugation at 5,000 rpm (10 min), the sedimented phase 1.0 μL was directly injected into the GC-MS system. The limits of quantitation (LOQs) were less than 0.6 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), was less than 11% for both intra- and interday analysis. Accuracy, expressed as the mean extraction recovery, was between 71 and 104%. Their total concentrations were determined in the range from 8.3 to 63.9 ng/L in various environmental samples by using a standard addition method.  相似文献   

5.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

6.
Rapid solvent‐free microwave‐assisted headspace solid‐phase microextraction (MA‐HS‐SPME) coupled with gas chromatography‐mass spectrometry (GC‐MS) was developed to determine synthetic polycyclic and nitro‐aromatic musks in fish samples. Four commonly used synthetic musks, galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) were employed in the method development and validation. The parameters (microwave irradiation time, irradiation power, amount of water addition, pH value and addition of NaCl) affecting the extraction efficiency of analytes from fish slurry were systematically investigated and optimized. The best extraction conditions were achieved when the fish sample 2‐g mixed with 4‐mL methanol and 15‐mL deionized water (containing 4 g of NaCl, pH 2.0 in a 40‐mL sample‐vial) was microwave irradiated at 80 watt for 5 min. The limits of quantification (LOQ) were 0.4 to 1.2 ng/g in 2‐g of wet tissue. The precision for these analytes, as indicated by relative standard deviations, were less than 9% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 80 to 92%. A standard addition method was used to quantitate these four synthetic musks, and the total concentrations ranged from 2.1 to 23.1 ng/g in various fish samples.  相似文献   

7.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

9.
In this study, a new two–step extraction procedure based on the combination of a modified quick, easy, cheap, effective, rugged, and safe extraction method with a deep eutectic solvent based microwave‐assisted dispersive liquid–liquid microextraction has been developed for the extraction of multiclass pesticides in tomato samples before their analysis by gas chromatography with flame ionization detection. In this method, initially, an aliquot of tomato is crushed and diluted with deionized water. The mixture is then passed through a filter paper and its residue and aqueous phase are separated. Afterwards, acetonitrile as an extraction/disperser solvent is passed through the filter paper containing the refuse. The analytes remained in the refuse are extracted into the acetonitrile and then the obtained extract is mixed with a deep eutectic solvent. The obtained mixture is injected into the tomato juice and placed in a microwave oven for 15 s. Consequently, a cloudy state is formed and the extractant containing the analytes are sedimented at the bottom of the tube after centrifugation. Finally, 1 μL of the sedimented phase is removed and injected into the separation system. Under the optimum conditions, limits of detection and quantification were in the ranges of 0.42–0.74 and 1.4–2.5 ng/g, respectively.  相似文献   

10.
Simultaneous dispersive liquid-liquid microextraction (DLLME) and derivatization combined with gas chromatography-electron-capture detection (GC-ECD) was used to determine chlorophenols (CPs) in water sample. In this derivatization/extraction method, 500 microL acetone (disperser solvent) containing 10.0 microL chlorobenzene (extraction solvent) and 50 microL acetic anhydride (derivatization reagent) was rapidly injected by syringe in 5.00 mL aqueous sample containing CPs (analytes) and K(2)CO(3) (0.5%, w/v). Within a few seconds the analytes derivatized and extracted at the same time. After centrifugation, 0.50 microL of sedimented phase containing enriched analytes was determined by GC-ECD. Some effective parameters on derivatization and extraction, such as extraction and disperser solvent type and their volume, amount of derivatization reagent, derivatization and extraction time, salt addition and amount of K(2)CO(3) were studied and optimized. Under the optimum conditions, enrichment factors and recoveries are in the range of 287-906 and 28.7-90.6%, respectively. The calibration graphs are linear in the range of 0.02-400 microg L(-1) and limit of detections (LODs) are in the range of 0.010-2.0 microg L(-1). The relative standard deviations (RSDs, for 200 microg L(-1) of MCPs, 100 microg L(-1) of DCPs, 4.00 microg L(-1) of TCPs, 2.00 microg L(-1) of TeCPs and PCP in water) with and without using internal standard are in the range of 0.6-4.7% (n=7) and 1.7-7.1% (n=7), respectively. The relative recoveries of well, tap and river water samples which have been spiked with different levels of CPs are 91.6-104.7, 80.8-117.9 and 83.3-101.3%, respectively. The obtained results show that simultaneous DLLME and derivatization combined with GC-ECD is a fast simple method for the determination of CPs in water samples.  相似文献   

11.
A solid‐phase microextraction with carbon nanospheres coated fiber coupled with gas chromatographic detection was established for the determination of eight polycyclic aromatic hydrocarbons (naphthalene, biphenyl, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, and pyrene) in water and soil samples. The experimental parameters (extraction temperature, extraction time, stirring rate, headspace volume, salt content, and desorption temperature) which affect the extraction efficiency were studied. Under the optimized conditions, good linearity between the peak areas and the concentrations of the analytes was achieved in the concentration range of 0.5‐300 ng/mL for water samples, and in the concentration range of 6.0‐2700 ng/g for soil samples. The detection limits for the analytes were in the range of 0.12‐0.45 ng/mL for water samples, and in the range of 1.53‐2.70 ng/g for soil samples. The method recoveries of the polycyclic aromatic hydrocarbons for spiked water samples were 80.10‐120.1% with relative standard deviations less than 13.9%. The method recoveries of the analytes for spiked soil samples were 80.40‐119.6% with relative standard deviations less than 14.4%. The fiber was reused over 100 times without a significant loss of extraction efficiency.  相似文献   

12.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

13.
A sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of darunavir, ritonavir and tenofovir in human plasma. Sample preparation involved a simple liquid–liquid extraction using 200 μL of human plasma extracted with methyl tert‐butyl ether for three analytes and internal standard. The separation was accomplished on an Acquity UPLC BEH C18 (50 mm x 2.1 mm, 1.7 μm) analytical column using gradient elution of acetonitrile/methanol (80:20, v/v) and 5.0 mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4 mL/min. The linearity of the method ranged between 20.0 and 12 000 ng/mL for darunavir, 2.0 and 2280 ng/mL for ritonavir, and 14.0 and 1600 ng/mL for tenofovir using 200 μL of plasma. The method was completely validated for its selectivity, sensitivity, linearity, precision and accuracy, recovery, matrix effect, stability, and dilution integrity. The extraction recoveries were consistent and ranged between 79.91 and 90.04% for all three analytes and internal standard. The method exhibited good intra‐day and inter‐day precision between 1.78 and 6.27%. Finally the method was successfully applied for human pharmacokinetic study in eight healthy male volunteers after the oral administration of 600 mg darunavir along with 100 mg ritonavir and 100 mg tenofovir as boosters.  相似文献   

14.
A new method was applied for extraction of five chlorophenols from soil and marine sediment samples. Microwave-assisted extraction coupled with dispersive liquid-liquid microextraction followed by semi-automated in-syringe back-extraction technique was used as an extraction technique. Microwave-assisted extraction was performed by using 2.0 mL of alkaline water at pH 10.0. After extraction, the pH of extraction solution was adjusted at 6.0 and dispersive liquid-liquid microextraction procedure was done using 1.0 mL of acetone as a disperser solvent and 37.0 μL of chlorobenzene as extraction solvent. About 20.0 ± 0.5 μL sedimented phase was collected after centrifugation step. Then, chlorophenols were back extracted into 20 μL of alkaline water at pH 12.0 within the microsyringe. Finally, 20.0 μL of aqueous solution was injected into high performance liquid chromatography with ultra violet detection for analysis. The obtained recovery and preconcentration factors for the analytes were in the range of 68.0-82.0% and 25-30, respectively, with relative standard deviations ≤7.6%. The limits of the detection were found in the range of 0.0005-0.002 mg/kg. The method provides a simple and fast procedure for the extraction and determination of chlorophenols in soil and marine sediment samples.  相似文献   

15.
A simple, rapid and sensitive method was developed for the simultaneous quantification of curdione, furanodiene and germacrone in rabbit plasma using a LC‐MS/MS analysis. The plasma sample preparation was a simple deproteinization by the addition of 3 vols of acetonitrile followed by centrifugation. The analytes and internal standard (IS) costunolide were separated on a Zorbax SB‐C18 column (3.5 µm, 2.1 × 100 mm) with mobile phase of methanol–water (90:10, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min with an operating temperature of 25°C. Detection was carried out by atmospheric pressure chemical ionization in positive ion selected reaction monitoring mode. Linear detection responses were obtained for the three test compounds ranging from 5 to 5000 ng/mL and the lower limits of quantitation were 5‐10ng/mL. The intra‐ and inter‐day precisions (relative standard deviations) were within 9.4% for all analytes, while the deviation of assay accuracies was within ±10.0%. The average recoveries of analytes were >80.0%. All analytes were proved to be stable during all sample storage, preparation and analytical procedures. The method was successfully applied to the pharmacokinetic study of the three compounds after vaginal drug delivery of Baofukang suppository to rabbit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820–1020 and 91–97%, respectively. The linear range was wide (50–1000 ng/mL) and limit of detection was very low (1.5–2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2–6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained.  相似文献   

17.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

18.
A simple method is introduced providing a highly clean microextraction for the determination of some anti‐inflammatory drugs as the model analytes in human urine and environmental matrices. This method is based upon the implementation of two consecutive emulsification liquid‐phase microextractions, which are separated by a syringe filtration step. In this method, the organic extraction solvent (dihexyl ether) is dispersed into the aqueous sample solution (20 mL), and the resulting cloudy mixture is passed through a hydrophilic polytetrafluoroethylene syringe filter. By this action, the extraction phase containing the analytes and many interfering species that could be transferred into the organic phase is retained behind the hydrophilic membrane. The filter is then detached from the syringe and attached to another syringe containing an aqueous solution (pH 12.0, 150 μL), and by the in‐syringe dispersion of the organic phase into the aqueous phase, the analytes are selectively back‐extracted into the aqueous phase. The developed method is centrifuge‐free and very simple, and provides a high sample clean‐up in a few minutes. Under the optimized experimental conditions, the developed method provided a linearity in the range of 2.0–2000 ng/mL, a low limit of detection (0.5 ng/mL), and enrichment factors of 47–53.  相似文献   

19.
Surfactant‐assisted electromembrane extraction coupled with cyclodextrin‐modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution. Optimization of the variables, affecting proposed method, was carried out and best results were achieved with a 175 V potential as driving force of the electromembrane extraction, 2‐nitrophenyloctylether as the supported liquid membrane, donor solution containing 0.2 mM Triton X‐100 with pH 3 and 0.1 M HCl for acceptor solution. Then, the extract was analyzed using cyclodextrin‐modified capillary electrophoresis method for separation of Tranylcypromine enantiomers. The best results were obtained with a phosphate running buffer (100 mM, pH 2.0) containing 7% w/v hydroxypropyl‐α‐cyclodextrin. Under the optimum conditions, a low limit of detection (3.03 ng/mL), good linearity (R2 > 0.9953), and relative standard deviations below 4.0% (n = 5) were obtained. Finally, this procedure was applied to determine the concentration of Tranylcypromine enantiomers in urine samples with satisfactory results.  相似文献   

20.
A fast, sensitive, and high‐throughput ultra‐HPLC–MS/MS method has been developed and validated for the simultaneous determination of three main active constituents of Euphorbiae pekinensis Radix in rat plasma. After addition of the internal standard, plasma samples were extracted by liquid–liquid extraction with ethyl acetate/isopropanol (1:1, v/v) and separated on a CAPCELL PAK C18 column (100 × 2.0 mm, 2 μm, Shiseido, Japan), using a gradient mobile phase system of methanol/water. The detection of the analytes was performed on a 4000Q UHPLC–MS/MS system with turbo ion spray source in the negative ion and multiple reaction‐monitoring mode. The linear range was 1.0–1000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐glucopyranoside (i), 1.5–1500 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐xylopyranoside (ii), and 5.0–5000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid (iii). The intra‐ and interday precision and accuracy of all the analytes were within 15%. The extraction recoveries of the three analytes and internal standard from plasma were all more than 80%. The validated method was first successfully applied to the evaluation of pharmacokinetic parameters of compounds 1 , 2 , and 3 in rat plasma after intragastric administration of the Euphorbiae pekinensis Radix extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号