首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2004,16(10):843-851
Cationic surfactants of different types were determined using a few potentiometric sensors based on ion‐pair complexes (dodecyldimethylbenzylammonium dodecylsulfate, dodecylmethylbenzylammonium dodecylbenzensulfonate, tetrahexadecylammonium dodecylsulfate and Hyamine (benzethonium dodecylsulfate)) as sensing materials. The response of the all‐solid state surfactant sensitive electrode based on a Teflonized graphite conducting substrate, coated with a PVC membrane containing sensing material, was investigated in the solutions of Hyamine and hexadecyltrimethylammonium ion in the concentration range from 1 μM to 10 mM. Potentiometric surfactant cation titration has been performed using sodium dodecylsulfate as titrant and an ion‐pair‐based surfactant sensitive electrode as a potentiometric indicator. Several commercial surfactant products have also been titrated and the results were compared with those obtained with two‐phase standard titration method.  相似文献   

2.
This paper reports the development and characterization of a solid state potentiometric sensor for chloride ions, based on doped polypyrrole‐graphite‐epoxy composite. The optimum mixture proportion found for polypyrrole:graphite was 60 : 40 meanwhile a 50 : 50 proportion was used for the polypyrrol+graphite:epoxy mixture. The stabilization time was approximately 16 min, while the response times varied within 2 and 23 s. The sensor displayed a sensitivity of 58 mV/decade [Cl?], and 3×10?6 M detection limit. The selectivity coefficients showed a greater selectivity to that reported for commercial‐type sensors. The statistical analysis for chlorides' determination in commercial saline serums did not show significant differences respect to data reported by the manufacturers.  相似文献   

3.
分子印迹电位型传感器快速检测猪尿液中的克伦特罗   总被引:2,自引:0,他引:2  
梁荣宁  高奇  秦伟 《分析化学》2012,(3):354-358
以盐酸克伦特罗为模板分子,采用沉淀聚合法合成了克伦特罗的分子印迹聚合物,并以其为离子载体,制得分子印迹聚合物膜克伦特罗离子选择性电极。在最优实验条件下,电极对克伦特罗阳离子的检出限可达7.0×10-8mol/L,线性范围为1.0×10-7~1.0×10-4mol/L,能斯特斜率为55.7 mV/decade。此电极具有优越的选择性、快速的响应时间以及良好的稳定性;已成功应用于实际猪尿样品中克伦特罗的测定,加标回收率为98%~107%,检测时间小于3 min。  相似文献   

4.
A novel potentiometric sensor based on screen‐printed carbon electrode covered with electropolymerized polyaniline (PANI) and unsubstituted pillar[5]arene as ionophore has been developed and tested in potentiometric measurements of pH and metal ions. The introduction of pillar[5]arene improved the reversibility of the pH response in the range from 2.0 to 9.0 with the slope of 45 mV/pH. Among metal cations, the response to Fe3+ and Ag+ ions was referred to PANI redox conversion whereas the signal toward Cu2+ in the range from 1.0×10?6 to 1.0×10?2 M (limit of detection (LOD) 3.0×10?7 M) to specific interaction with the macrocycle.  相似文献   

5.
《Electroanalysis》2004,16(15):1236-1243
Potentiostatic polymerization of polypyrrole doped with dodecylsulfate anion (DS?) was carried out in situ over a tubular composite (graphite‐epoxy resin) support in order to develop a potentiometric DS? sensor (TISE) suitable for flow injection analysis (FIA). The sensibility of the TISE was maximized using the SIMPLEX algorithm in terms of the concentration of the pyrrole monomer, the concentration of DS?, the potential imposed and polymerization time. Response times between 2 and 4 minutes were observed. The analytical parameters obtained with the flow system were compared with those obtained in batch studies. In both, flow and batch analysis, potential vs. DS? concentration curves displayed two linear regions with different slopes. Flow analysis for DS? ion brings a total linear range of 1.58×10?5 M to 3.88×10?3 M with a maximum sensibility of 36.4 mV/concentration decade, meanwhile in batch studies the total linear range found was of 6.31×10?6 M to 1.0×10?3 M with a maximum sensibility of 54.49 mV. The flow system response pH range was from 5 to 8. The reproducibility in terms of the relative error of the mean of different experiments was 1.58%. Two salient features of the system designed and built are worthy of mention: the sensor presented high selectivity to the dodecyl sulfate ion as compared to other inorganic anions including other anionic surfactants. The sensor lifetime in the FIA system by means of the sensibility changes was found to be of approximately four months.  相似文献   

6.
《Electroanalysis》2006,18(1):7-18
Conducting polymers, i.e., electroactive conjugated polymers, are useful both as ion‐to‐electron transducers and as sensing membranes in solid‐state ion‐selective electrodes. Recent achievements over the last few years have resulted in significant improvements of the analytical performance of solid‐contact ion‐selective electrodes (solid‐contact ISEs) based on conducting polymers as ion‐to‐electron transducer combined with polymeric ion‐selective membranes. A significant amount of research has also been devoted to solid‐state ISEs based on conducting polymers as the sensing membrane. This review gives a brief summary of the progress in the area in recent years.  相似文献   

7.
In this work, the construction and performance evaluation of PVC membranes ion‐selective electrodes for the determination of tetracycline type antibiotics is described. Electrodes with the best responses were based on plastic membranes containing 31% (w/w) PVC, 68% (w/w) of dibutylphthalate as plasticizer and 1% (w/w) of β‐cyclodextrin as ionophore. The electrodes were responsive over 6 months to tetracycline, oxytetracycline, doxycycline and chlortetracycline in glycine buffer solution (pH 2), in the dynamic range 2×10?5–10?2 mol L?1 with a constant slope of about 55 mV/dec To enable large scale analysis reducing wastes as associated costs tubular shape electrodes were coupled to a sequential‐injection analysis system and its performance evaluated using pharmaceutical samples and waste waters from a treatment facility. The sample throughput of 51 samples h?1 was enabled by the system as well as results that favorably agree with those provided by chromatographic analysis.  相似文献   

8.
《Electroanalysis》2005,17(18):1609-1615
Potentiometric Ag+ sensors were prepared by galvanostatic electropolymerization of 3,4‐ethylenedioxythiophene (EDOT) and pyrrole (Py) on glassy carbon electrodes by using sulfonated calixarenes as doping ions. Poly(3,4‐ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) doped with p‐sulfonic calix[4]arene (C4S), p‐sulfonic calix[6]arene (C6S) and p‐sulfonic calix[8]arene (C8S) were compared. PEDOT and PPy doped with poly(styrene sulfonate) (PSS) were also included for comparison. The analytical performance of the conducting polymer‐based Ag+ sensors was studied by potentiometric measurements. All conducting polymer and dopant combinations showed sensitivity and selectivity to Ag+ compared to several alkali, alkaline‐earth, and transition‐metal cations. The type of the conducting polymer used for the fabrication of the electrodes was found to have a more significant effect on the selectivity of the electrodes to Ag+ than the ring size of the sulfonated calixarenes used as dopants. Selected conducting polymer‐based sensors were studied by cyclic voltammetry (CV) and energy dispersive analysis of X‐rays (EDAX) measurements. Results from the EDAX measurements show that both PEDOT‐ and PPy‐based membranes accumulate silver.  相似文献   

9.
《Electroanalysis》2017,29(6):1612-1617
Ciprofloxacin is one of the most potent fluoroquinolone antibiotics in medical treatment with a widely effective antibacterial activity. Aim of the presented paper was to use boron doped diamond electrodes for a sensitive, simple and reliable voltammetric determination of ciprofloxacin in human urine samples. Prior to the electrochemical analyses, an optimal boron doping level was determined in order to achieve the highest sensitivity. A set of boron doped diamond electrodes with the doping level in the range from 0 to 20 000 ppm B/C was used for this purpose. Electrochemical behavior of ciprofloxacin was investigated using cyclic voltammetry in an ammonium acetate buffer (pH 5), where ciprofloxacin provided a well‐defined irreversible oxidation peak at a potential of + 1.15 V. Under optimal experimental conditions, the calibration curve obtained by square‐wave voltammetry was linear in a concentration range from 0.15 to 2.11 μmol/L (R2=0.9974). A very low limit of detection (0.05 μmol/L) was obtained for the BDD electrode with the highest doping level. The developed square wave method was successfully applied to the determination of ciprofloxacin in human urine samples with a very good recovery (from 97 to 102%).  相似文献   

10.
A novel application of fluorine‐doped tin oxide (FTO) electrodes is reported in the present work. To this end, the captopril electrochemical oxidation mechanism on FTO electrodes at various pH and its determination in pharmaceutical preparations was investigated. Captopril oxidation on FTO proceeds at pH between 2.0 and 4.0. The study revealed that interferences for captopril determination in pharmaceutical samples was totally suppressed using these electrode materials. Voltammetric survey showed an anodic peak at about 0.375 V (Ag|AgCl) for captopril oxidation, that takes place through an EC process at pH interval 2.0–4.0. The investigation demonstrated that captopril oxidation occurs through protonated species and these electroactive species interact by adsorption on FTO electrodes, with a large heterogeneous rate constant and a mechanism involving 1H+/1e? in the global reaction. Moreover, a captopril sensor based upon FTO electrodes, with a linear range miliMolar, is proposed. These electrodes are promising candidates for the efficient electrochemical determination of captopril in pharmaceutical preparations.  相似文献   

11.
《Electroanalysis》2017,29(5):1214-1221
A highly sensitive enzymeless electrochemical glucose sensor has been developed based on the simply prepared cathodized gold nanoparticle‐modified graphite pencil electrode (AuNP‐GPE). Cyclic voltammetry (CV) experiments show that AuNP‐GPE is able to oxidize glucose partially at low potential (around −0.27) whereas the bare GPE cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose cannot be oxidized at potential lower than +0.1 V at AuNP‐GPE. As a result, the glucose oxidation peak at around −0.27 V is suitable enough for selective detection of glucose in the presence of fructose and sucrose. Cathodization of AuNP‐GPE under optimum condition (‐1.0 V for 30 s) in the same glucose solution before voltammetric measurement enhanced glucose oxidation peak current around −0.27 V to achieve an efficient electrochemical sensor for glucose with a detection limit of 12 μM and dynamic range between 0.05 to 5.0 mM with a good linearity (R2= 0.999). Almost no interference effect was observed for sensing of glucose in the presence of ascorbic acid, alanine, phenylalanine, fructose, sucrose, and NaCl.  相似文献   

12.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

13.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

14.
The synthesis of a new compound, amide‐linked manganese diporphyrin xanthene (Mn2Cl2ADPX), and its application for preparation of thiocyanate selective electrodes was described. The electrode was prepared with a PVC membrane combining Mn2Cl2ADPX as an electro active material, 2‐nitrophenyl octyl ether (o‐NPOE) as a plasticizer in the percentage ratio of 3 : 65 : 32 (Mn2Cl2ADPX: o‐NPOE: PVC, w : w : w). The electrode exhibited linear response within the concentration range of 2.4×10?6 to 1.0×10?1 M SCN?, with a working pH range from 3.0 to 8.0 and a fast response time of less than 60 s. Several electroactive materials and solvent mediators have been compared and the experimental conditions were optimized. The Mn2Cl2ADPX based electrode shows obviously better response characteristics than that of monoporphyrin manganese in terms of working concentration range and slope. Selectivity coefficients for SCN? relative to a number of interfering ions were investigated. The electrode exhibits anti‐Hofmeister selectivity toward SCN? with respect to common coexisting anions. The electrode was applied to the determination of SCN? in body urine with satisfactory results.  相似文献   

15.
《Electroanalysis》2017,29(12):2708-2718
An inexpensive stability−indicating anodic voltammetric method for rapid determination of two non‐classical β ‐lactam antibiotics; Meropenem (MP) and Ertapenem (EP) has been developed and validated. The method was based on the enhancement of voltammetric response at a disposable graphite pencil electrode (GPE). Differential pulse voltammetric (DPV) method was developed for quantification of both drugs in B−R buffer solution (pH 2.0) at GPE. The GPE displayed very good voltammetric behavior with significant enhancement of the peak current compared to glassy carbon electrode (GCE). Stress stability studies were performed using 0.5 M of either HCl or NaOH and H2O2. Mass and infrared spectroscopy were used for identification of degradants and their pathways were illustrated. Under optimal conditions, the peak currents showed a linear dependence with drug concentrations. The achieved limits of detection (LOD) were 1.23, 2.07 and 1.50 μM for MP and two waves of EP, respectively. The developed voltammetric method was successfully applied for direct determination of MP and EP in drug substances, pharmaceutical vials and in presence of either their corresponding hydrolytic, oxidative‐degradants or interfering substances with no potential interferences. The differential pulse voltammograms were highly advantageous and applicable in QC laboratories for rapid, selective micro‐determination of MP and EP.  相似文献   

16.
A new boron doped diamond microcells (BDD) was modified, for rapid, selective and highly sensitive determination of nitrite, using a coating film of polyoxometalates (POMs), formed by cyclic voltammetry on the molecular p‐phenylenediamine (PPD) functionalized BDD. The scanning electron microscopy (SEM) technique was used to examine the morphology of (PPD/SiW11) modified (BDD) electrode. It was found that (SiW11) layer was uniformly formed on the electrode surface. It was observed that (BDD/PPD/SiW11) showed excellent electrocatalytic activities towards nitrite ion. Under the selected conditions, the anodic peak maximum at ?0.6 V was linear versus nitrite concentration in the 40 µM–4 mM range, and the detection limit obtained was 20 µM. The newly developed electrode has been successfully applied to the determination of nitrite content in real river water samples.  相似文献   

17.
A voltammetric sensor for sensitive and specific determination of trans‐resveratrol (RES) were prepared based on immobilization of an RES‐imprinted film on the surface of functionalized Indium Tin Oxide (ITO) electrode, which was modified with γ‐methacyloxypropyl trimethoxysilane (γ‐MPS). Cyclic Voltammetry (CV) was presented to extract RES from the molecularly imprinted polymer film and RES were extracted rapidly and completely. The binding performance of the imprinted electrode with the template RES were investigated using differential pulse voltammetry (DPV). The results showed that the imprinted ITO film can give selective recognition to the template RES over that of structurally analogous molecules. A linear response to RES in the concentration range of 2.0×10?6 M to 2.0×10?5 M was observed with a correlation coefficient of 0.992, and the detection limit of the electrochemical sensor was 8.0×10?7 M. Whereas, binding to the reference nonimprinted electrode, made in the same way but without the addition of template RES, there was almost no response to RES.  相似文献   

18.
《Electroanalysis》2005,17(4):348-355
An array of eight nonspecific potentiometric sensors was used in combination with multivariate calibration for the simultaneous determination of NH , K+ and Na+ ions. The sensors were of the all‐solid‐state type and employed a PVC polymer membrane. Signals were processed by using a multilayer artificial neural network (ANN). The ANN configuration used was optimized by using 8 neurons in the input layer, 5 in the hidden layer and 3 in the output layer. Use of the Bayesian Regularization algorithm allowed a quick building of an accurate model, as confirmed by random multi‐starting of network weights. The system was used to analyze synthetic and river water, waste water and fertilizer samples. Correct results were obtained for the three ions in synthetic and real water samples; in fertilizers, ammonium ion can be determined, while sodium and potassium show biased results.  相似文献   

19.
The electrochemical methods cyclic and square‐wave voltammetry were applied to develop an electroanalytical procedure for the determination of N‐nitrosamines (N‐nitrosopyrrolidine, N‐nitrosopiperidine and N‐nitrosodiethylamine) in aqueous solutions. Cyclic voltammetry was used to evaluate the electrochemical behaviors of N‐nitrosamines on boron‐doped diamond electrodes. It was observed an irreversible electrooxidation peak located in approximately 1.8 V (vs. Ag/AgCl) for both N‐nitrosamines. The optimal electrochemical response was obtained using the following square‐wave voltammetry parameters: f=250 Hz, Esw=50 mV and Es=2 mV using a Britton–Robinson buffer solution as electrolyte (pH 2). The detection and quantification limits determined for total N‐nitrosamines were 6.0×10?8 and 2.0×10?7 mol L?1, respectively.  相似文献   

20.
A type of novel electroanalytical sensing nanobiocomposite material was prepared by electropolymerization of pyrrole containing poly(amidoamine) dendrimers‐encapsulated platinum nanoparticles (Pt‐PAMAM), and glucose oxidase (GOx). The Pt nanoparticles encapsulated in PAMAM are nearly monodisperse with an average diameter of 3 nm, and they provide electrical conductivity. Polypyrrole acts as a polymer backbone to give stable and homogeneous cast thin films, and it also defines the electrical conductivity. Both Polypyrrole and PAMAM can provide a favorable microenvironment to keep the bioactivity of enzymes such as glucose oxidase. The homogeneity of GOx/Pt‐PAMAM‐PPy nanobiocomposite films was characterized by atomic force microscopy (AFM). Amperometric biosensors fabricated with these materials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and amperometric measurements in the presence of hydrogen peroxide or glucose. All those show the resultant biosensor sensitivity was strongly enhanced within the nanobiocomposite film. The optimized glucose biosensor displayed a sensitivity of 164 μA mM?1 cm?1, a linear range of 0.2 to 600 μM, a detection limit of 10 nM, and a response time of <3 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号