首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of peptides and proteins by CE is often desirable due to low sample consumption and possibilities for nondenaturing yet highly effective separations. However, adsorption to the inner surfaces of fused-silica capillaries often is detrimental to such analyses. This phenomenon is especially pronounced in the analysis of basic proteins and proteins containing exposed positively charged patches. To avoid wall interactions numerous buffer additives and static and dynamic wall coating principles have been devised. We previously showed (J. Chromatogr. A 2004, 1059, 215-222) that CE of the basic protein beta2-glycoprotein was rendered possible by an acidic pretreatment step, and we attributed this observation to the so-called pH hysteresis effect that influences the time for pH equilibration of the capillary wall and thus the effective wall charge and the electroosmotic mobility. We here investigate the effects of different pretreatment techniques on EOF values and on the rate of the deprotonation of silanol groups when performing the electrophoresis at neutral pH. We show the utility of this simple approach for the CE analysis of a number of basic proteins in plain silica capillaries at physiological pH.  相似文献   

2.
The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2‐(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3‐methyl‐1‐(4‐vinylbenzyl)‐imidazolium chloride) (PIL‐1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi‐permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL‐1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β‐blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5‐diazabicyclo[4.3.0]non‐5‐ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.  相似文献   

3.
We present the polymer poly-N-hydroxyethylacrylamide (PHEA) (polyDuramide) as a novel, hydrophilic, adsorbed capillary coating for electrophoretic protein analysis. Preparation of the PHEA coating requires a simple and fast (30 min) protocol that can be easily automated in capillary electrophoresis instruments. Over the pH range of 3-8.4, the PHEA coating is shown to reduce electroosmotic flow (EOF) by about 2 orders of magnitude compared to the bare silica capillary. In a systematic comparative study, the adsorbed PHEA coating exhibited minimal interactions with both acidic and basic proteins, providing efficient protein separations with excellent reproducibility on par with a covalent polyacrylamide coating. Hydrophobic interactions between proteins and a relatively hydrophobic poly-N,N-dimethylacrylamide (PDMA) adsorbed coating, on the other hand, adversely affected separation reproducibility and efficiency. Under both acidic and basic buffer conditions, the adsorbed PHEA coating produced an EOF suppression performance comparable to that of covalent polyacrylamide coating and superior to that of adsorbed PDMA coating. The protein separation performance in PHEA-coated capillaries was retained for 275 consecutive protein separation runs at pH 8.4, and for more than 800 runs at pH 4.4. The unique and novel combination of hydrophilicity and adsorptive coating ability of PHEA makes it a suitable wall coating for automated microscale analysis of proteins by capillary array systems.  相似文献   

4.
Poly(tetrafluoroethylene) (PTFE) is a material widely known for its inertness and excellent electrical properties. It is also transparent in the UV region and has a reasonable thermal conductivity. These properties make PTFE a suitable material for the separation capillary in capillary electrophoresis. Differences in the chemistry of the capillary wall compared to fused silica (FS) can make PTFE an interesting alternative to FS for some special applications. In this work, properties of a commercial PTFE capillary of approx. 100 microm i.d. were investigated, including the dependence of electroosmotic flow (EOF) on pH for unmodified and dynamically modified PTFE, optical properties, and practical aspects of use. The main problems encountered for the particular PTFE capillary used in this study were that it was mechanically too soft for routine usage and the crystallinity of the PTFE caused light scattering, leading to high background absorbance values in the low UV region. The profile of the EOF versus pH for bare PTFE surprisingly showed significantly negative EOF values at pH < 4.2, with an EOF of -30 x 10(-9) m2 V(-1) s(-1) being observed at pH 2.5. This is likely to be caused by either impurities or additives of basic character in the PTFE, so that after their protonation at acidic pH they establish a positive charge on the capillary wall and create a negative EOF. A stable cationic semi-permanent coating of poly(diallyldimethylammonium chloride) (PDDAC) could be established on the PTFE capillary and led to very similar magnitudes of EOF to those observed with FS. A hexadecanesulfonate coating produced a cathodic EOF of extremely high magnitude ranging between +90 and +110 x 10(-9) m2 s(-1) V(-1), which are values high enough to allow counter-EOF separation of high mobility inorganic anions. In addition, pH-independent micellar electrokinetic capillary chromatography (MEKC) separations could be easily realised due to hydrophobic adsorption of sodium dodecylsulfate (used to form the micelles) on the wall of the PTFE capillary. The use of polymers that would be mechanically more robust and optically transparent in the low-UV region should make such CE capillaries an interesting alternative to fused silica.  相似文献   

5.
Surface modification of the inner capillary wall in CE of proteins is frequently required to alter EOF and to prevent protein adsorption. Manual protocols for such coating techniques are cumbersome. In this paper, an automated covalent linear polyacrylamide coating and regeneration process is described to support long‐term stability of fused‐silica capillaries for protein analysis. The stability of the resulting capillary coatings was evaluated by a large number of separations using a three‐protein test mixture in pH 6 and 3 buffer systems. The results were compared to that obtained with the use of bare fused‐silica capillaries. If necessary, the fully automated capillary coating process was easily applied to regenerate the capillary to extend its useful life‐time.  相似文献   

6.
In this study, positively charged alkylaminosilyl monomers were used to modify the inner surface of fused silica capillaries, which subsequently were employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC). The obtained surfaces yield a reversed electroosmotic flow (EOF) and have varying carbon chain lengths, that interact with the analytes and give chromatographic retention. The coating procedure is very simple and fast. The performance of the modified capillaries was evaluated regarding pH influence on EOF and chromatographic interactions. The experiments were conducted with UV and mass spectrometry (MS) and applied to the separation of various neuropeptides. The derivatized surfaces showed a linear (R(2) approximately 0.99) pH dependence with isoelectric points (pI) at 8.6-8.8. Rapid separations of peptide standards and a protein digest with efficiencies as high as 5 x 10(5) plates/m were performed.  相似文献   

7.
Quasi‐interpenetrating network (quasi‐IPN) of linear polyacrylamide (LPA) with low molecular mass and poly(N,N‐dimethylacrylamide) (PDMA), which is shown to uniquely combine the superior sieving ability of LPA with the coating ability of PDMA, has been synthesized for application in dsDNA and basic protein separation by CE. The performance of quasi‐IPN on dsDNA separation was determined by polymer concentration, electric field strength, LPA molecular masses and different acrylamide (AM) to N,N‐dimethylacrylamide (DMA) ratio. The results showed that all fragments in Φ×174/HaeIII digest were achieved with a 30 cm effective capillary length at –6 kV at an appropriate polymer solution concentration in bare silica capillaries. Furthermore, EOF measurement results showed that quasi‐IPN exhibited good capillary coating ability, via adsorption from aqueous solution, efficiently suppressing EOF. The effect of the buffer pH values on the separation of basic proteins was investigated in detail. The separation efficiencies and analysis reproducibility demonstrated the good potentiality of quasi‐IPN matrix for suppressing the adsorption of basic proteins onto the silica capillary wall. In addition, when quasi‐IPN was used both as sieving matrix and dynamic coating in bare silica capillaries, higher peak separation efficiencies, and better migration time reproducibility were obtained.  相似文献   

8.
In this work, the suitability of a new polymer family has been investigated as capillary coatings for the analysis of peptides and basic proteins by CE. This polymer family has been designed to minimize or completely prevent protein–capillary wall interactions and to modify the EOF. These coating materials are linear polymeric chains bearing as side cationizable moiety a dentronic triamine derived from N,N,N’,N’‐tetraethyldiethylenetriamine (TEDETA), which is linked to the backbone through a spacer (unit labeled as TEDETAMA). Four different polymers have been prepared and evaluated: a homopolymer which comprised only of those cationizable repetitive units of TEDETAMA, and three copolymers that randomly incorporate TEDETAMA together with neutral hydrosoluble units of N‐(2‐hydroxypropyl) methacrylamide (HPMA) at different molar percentages (25:75, 50:50 and 75:25). It has been demonstrated that the composition of the copolymers influences the EOF and therefore the separation of the investigated biopolymers. Among the novel polymers studied, poly‐(TEDETAMA‐co‐HPMA) 50:50 copolymer was successfully applied as coating material of the inner capillary surface in CE‐UV and CE‐MS, providing EOF reversing together with fast and efficient baseline separation of peptides and basic proteins. Finally, the feasibility of the polymer‐coated capillary was shown through the analysis of lysozyme in a cheese sample.  相似文献   

9.
In this work, a new physically adsorbed coating for capillary electrophoresis (CE) is presented. The coating is based on a N,N-dimethylacrylamide-ethylpyrrolidine methacrylate (DMA-EPyM) copolymer synthesized in our laboratory. The capillary coating is simple and easy to obtain as only requires flushing the capillary with a polymer aqueous solution for 2 min. It is shown that by using these coated capillaries the electrostatic adsorption of a group of basic proteins onto the capillary wall is significantly reduced allowing their analysis by CE. Moreover, the DMA-EPyM coating provides reproducible separations of the basic proteins with RSD values for migration times lower than 0.75% for the same day (n = 5) and lower than 3.90% for three different days (n = 15). Interestingly, the electrical charge of the coated capillary wall can be modulated by varying the pH of the running buffer which makes possible the analysis of basic and acidic proteins in the same capillary. The usefulness of this coating is further demonstrated via the reproducible separation of whey (i.e. acidic) proteins from raw milk. The coating protocol should be compatible with both CE in microchips and CE-MS of different types of proteins.  相似文献   

10.
Cao F  Luo Z  Zhou D  Zeng R  Wang Y 《Electrophoresis》2011,32(10):1148-1155
In this work, a novel graft copolymer, hydroxyethylcellulose-graft-poly(2-(dimethylamino)ethyl methacrylate) (HEC-g-PDMAEMA), used as physical coatings of the bare fused-silica capillaries, was synthesized by using ceric ammonium nitrate initiator in aqueous nitric acid solution. EOF measurement results showed that the synthesized HEC-g-PDMAEMA graft copolymer-coated capillary in this paper could suppress EOF effectively compared to the bare fused-silica capillary, and efficient separations of basic proteins were also achieved. The electrical charge of the coated capillary wall could be modulated by varying not only the pH of the running buffer, but also the grafting ratio of poly(2-(dimethylamino)ethyl methacrylate) grafts, which makes possible the analysis of basic and acidic proteins in the same capillary. The effects of poly(2-(dimethylamino)ethyl methacrylate) grafting ratio in HEC-g-PDMAEMA and buffer pH on the separation of basic proteins for capillary electrophoresis were investigated in detail. Furthermore, egg white proteins and milk powder samples were separated by the HEC-g-PDMAEMA-coated capillary. The results demonstrated that the HEC-g-PDMAEMA copolymer coatings have great potential in the field of diagnosis and proteomics.  相似文献   

11.
New dynamic coating agents were investigated for the manipulation of electroosmotic flow (EOF) in poly(methylmethacrylate) (PMMA) microchips. Blocking proteins designed for enzyme-linked immunosorbent assay (ELISA) applications (e.g. Block Ace and UltraBlock), and egg-white lysozyme were proposed in this study. The EOF could be enhanced, suppressed or its direction could be reversed, depending on the buffer pH and the charge on the proteins. The coating procedure is simple, requiring only filling of the microchannels with a coating solution, followed by a rinse with a running buffer solution prior to analysis. One major advantage of this method is that it is not necessary to add the coating agent to the running buffer solution. Block Ace and UltraBlock coatings were stable for at least five runs in a given microchannel without the need to condition the coating between runs other than replenishing the buffer solution after each run, i.e. the RSD values of EOF (n=5) were less than 4.3%, and there was no significant change in the EOF after 5 runs. The reproducibility of the coating procedures was found from the channel-to-channel RSD values of the EOF, and were less than 5.0% when using HEPES-Na buffer (pH 7.4) as the running buffer. Several examples of electrophoretic separations of amino acids and biogenic amines derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) are demonstrated in this paper. The dynamic coating method has the potential for a broad range of applications in microchip capillary electrophoresis (microchip CE) separations.  相似文献   

12.
A series of well‐defined triblock copolymers, poly(N, N‐dimethylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N, N‐dimethylacrylamide) (PDMA‐b‐PEO‐b‐PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA‐b‐PEO‐b‐PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA‐b‐PEO‐b‐PDMA triblock copolymer with PEO‐b‐PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused‐silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation.  相似文献   

13.
Liu H  Shi R  Wan W  Yang R  Wang Y 《Electrophoresis》2008,29(13):2812-2819
A series of well-defined diblock copolymers, poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-P4VP) used as physical coating of capillaries, were synthesized by atom transfer radical polymerization (ATRP). EOF measurement results showed that all synthesized PEO-b-P4VP diblock copolymer-coated capillaries in this report could suppress EOF effectively compared to the bare fused-silica capillaries, and efficient separations of basic proteins were achieved. The effects of the molecular weight of P4VP block in PEO-b-P4VP and buffer pH on the separation of basic proteins for CE were investigated in detail. Moreover, the relationships between morphologies of PEO-b-P4VP diblock copolymers in buffer, which were studied by transmission electron microscopy, and the separation efficiencies of basic protein with PEO-b-P4VP diblock copolymers coatings were discussed.  相似文献   

14.
Yang R  Shi R  Peng S  Zhou D  Liu H  Wang Y 《Electrophoresis》2008,29(7):1460-1466
We present cationized hydroxyethylcellulose (cat-HEC) synthesized in our laboratory as a novel physically adsorbed coating for CE. This capillary coating is simple and easy to obtain as it only requires flushing the capillary with polymer aqueous solution. A comparative study with and without polymers was performed. The adsorbed cat-HEC coating exhibited minimal interactions with basic proteins, providing efficient basic protein separations with excellent reproducibility. Under broad pHs, the amine groups are the main charged groups bringing about a global positive charge on the capillary wall. As a consequence, the cat-HEC coating produced an anodal EOF performance. A comparative study on the use of hydroxyethylcellulose (HEC) and cat-HEC as physically adsorbed coatings for CE are also presented. The separation efficiency and analysis reproducibility proved that the cat-HEC polymer was efficient in suppressing the adsorption of basic proteins onto the silica capillary wall. The long-term stability of the cat-HEC coating in consecutive protein separation runs has demonstrated the suitability of the coating for high-throughput electrophoretic protein separations.  相似文献   

15.
Manipulation of the EOF is essential for achieving optimal separations by MEKC. In this paper, we present an extensive investigation of the effect of common experimental conditions on the EOF observed in a capillary coated with poly(diallyldimethylammonium chloride) (PDADMA) polyelectrolyte under MEKC conditions. It was found that highly reproducible cathodal EOF is achieved approximately at or just below the conditional CMC value of SDS in the electrolytes used. At concentrations of SDS greater than the CMC the EOF is independent of pH. The impact of common organic modifiers (ACN, methanol, urea, beta-CD and nonionic surfactant) on the EOF behavior in both a PDADMA-coated capillary and a bare silica capillary is compared. The suppressing effect of organic modifiers on the EOF is much stronger for coated capillary indicating that these compounds additionally reduce the negative charge density on the capillary surface due to alteration of the surfactant coating.  相似文献   

16.
A new application of the polymeric ionic liquid (PIL) in capillary electrophoresis is reported. Poly(1-vinyl-3-butylimidazolium bromide) was physically adsorbed on silica capillary as the simple and effective coating for capillary electrophoresis (CE) analysis, in which the PIL is not present in the background electrolyte. The electroosmotic flow (EOF) of the PIL-coated capillary as compared with that of the bare fused-silica capillary shows a different dependence on electrolyte pH values. The EOF is reversed over a wide pH range from 3.0 to 9.0 and shows good repeatability. It is also found that the coated capillary has a good tolerance to some organic solvents, 0.1 M NaOH and 0.1 M HCl. The PIL-coated capillary has been employed in different areas. Both the basic proteins and anionic analytes can be well separated by PIL-coated capillaries in a fast and easy way. The PIL-coated capillary is also able to separate organic acid additives in a grape juice. The results showed that this type of coating provides an alternative to the CE separation of anions and basic proteins.  相似文献   

17.
A fast method for the generation of permanent hydrophilic capillary coatings for capillary electrophoresis (CE) is presented. Such interior coating is effected by treating the surface to be coated with a solution of glutaraldehyde as cross-linking agent followed by a solution of poly(vinyl alcohol) (PVA), which results in an immobilization of the polymer on the capillary surface. Applied for capillary zone electrophoresis (CZE) such capillaries coated with cross-linked PVA exhibit excellent separation performance of adsorptive analytes like basic proteins due to the reduction of analyte-wall interactions. The long-term stability of cross-linked PVA coatings could be proved in very long series of CZE separations. More than 1000 repetitive CE separations of basic proteins were performed with stable absolute migration times relative standard deviation (RSD > 1.2%) and without loss of separation efficiency. Cross-linked PVA coatings exhibit a suppressed electroosmotic flow and excellent stability over a wide pH range.  相似文献   

18.
Danger G  Pascal R  Cottet H 《Electrophoresis》2008,29(20):4226-4237
The control of the EOF direction and magnitude remains one of the more challenging issues for the optimization of separations in CE. In this work, we investigated the possibility to use non-uniform surface charge distribution for the modulation of the EOF in CE. Non-uniform zeta potentials were obtained by modifying a section of the capillary surface using adsorption of polyelectrolytes. Three different methods were studied: (i) partial polycation coating on a fused silica capillary, (ii) partial polycation (or polyanion) coating on polyelectrolyte multilayers, and (iii) partial polycation coating on a capillary previously modified with poly(ethylene oxide). The magnitude and the direction of the EOF as a function of the coated capillary length were first studied. The stability of the EOF and the separation performances were also considered taking two dialanine diastereoisomers as model compounds. In partially coated capillaries, the average solvent flow is the sum of two contributions: a non-dispersive electroosmotic contribution related to the capillary surface charge, and a dispersive hydrodynamic contribution that depends on the difference of surface charge between the coated and the non-coated capillary zones. To get a better insight into the influence of the hydrodynamic contribution to the total peak dispersion, the peak variances corresponding to the Taylor dispersion, the injection plug, and the axial diffusion were calculated. This work demonstrates that peak dispersion in a capillary partially coated by the inlet end is different from that obtained when the coating is performed by the outlet end. Experimentally, the combination of a partially coated capillary with a large volume sample stacking preconcentration step can be used for injecting up to 95% of the capillary volume. This approach leads to a preconcentration factor of 60 compared with CZE with classical injection.  相似文献   

19.
In this work, the properties of four cationic copolymers synthesized in our laboratory are studied as physically adsorbed coatings for capillary electrophoresis (CE). Namely, the four copolymers investigated were poly(N-ethyl morpholine methacrylamide-co-N,N-dimethylacrylamide), poly(N-ethyl pyrrolidine methacrylate-co-N,N-dimethylacrylamide), poly(N-ethyl morpholine methacrylate-co-N,N-dimethylacrylamide) and poly(N-ethyl pyrrolidine methacrylamide-co-N,N-dimethylacrylamide). Capillaries were easily coated using these four different macromolecules by simply flushing into the tubing an aqueous solution containing the copolymer. The stability and reproducibility of each coating were tested for the same day, different days and different capillaries. It is demonstrated that the use of these coatings in CE can drastically reduce the analysis time, improve the resolution of the separations or enhance the analysis repeatability at very acidic pH values compared to bare silica columns. As an example, the analysis of an organic acids test mixture revealed that the analysis time was reduced more than 6-times whereas the separation efficiency was significantly increased to nearly 10-times attaining values up to 595,000 plates/m using the coated capillaries. Moreover, it was shown that all the copolymers used as coatings for CE allowed the separation of basic proteins by reducing their adsorption onto the capillary wall. Links between their molecular structure, physicochemical properties and their performance as coatings in CE are discussed.  相似文献   

20.
Modification of capillary electrophoresis (CE) capillaries by poly(hydroxyethyl methacrylate) (poly(HEMA), poly(diethylene glycol monomethacrylate) (poly(DEGMA) and poly(triethylene glycol monomethacrylate) (poly(TEGMA), was studied. Methods based on physical adsorption of the modifier and on its chemical binding were compared on the basis of the electroosmotic flow (EOF) reproducibility, the EOF dependence on the pH, the symmetry of the peak of positively charged tyramine, the stability of the coating and the separation of standard and milk proteins in the modified capillaries. Reproducible coatings were obtained by chemical binding of the polymers to the capillary walls and by coating with a solution of a polymer, as also demonstrated by the atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号