首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional flows past a stationary circular cylinder near a plane boundary are numerically simulated using an immersed interface method with second‐order accuracy. Instead of a fixed wall, a moving wall with no‐slip boundary is considered to avoid the complex involvement of the boundary layer and to focus only on the shear‐free wall proximity effects for investigating the force dynamics and flow fields. To analyze the convergence and accuracy of our implementation, numerical studies have been first performed on a simple test problem of rotational flow, where the second order of convergence is confirmed through numerical experiments and an optimal range of relative grid‐match ratio of Lagrangian to Eulerian grid sizes has been recommended. By comparing the force quantities and the Strouhal number, the accuracy of this method has been demonstrated on the flow past a stationary isolated cylinder. The cylinder is then put in proximity to the wall to investigate the shear‐free wall proximity effects in the low Reynolds number regime (20≤Re≤200). The gap ratio, e/D, where e denotes the gap between the cylinder and the moving wall and D denotes the diameter of the cylinder, is taken from 0.10 to 2.00 to determine the critical gap ratio, (e/D)critical, for the alternate vortex shedding, where the fluid forces, flow fields and the streamwise velocity profiles are studied. One of the key findings is that the (e/D)critical for the alternate vortex shedding decreases as the Reynolds number increases. We also find that, in this low Reynolds number regime, the mean drag coefficient increases and peaks at e/D = 0.5 with the increase of e/D and keeps decreasing gently from e/D = 0.5 to e/D = 2.0, while the mean lift coefficient decreases monotonically with the increase of e/D. New correlations are then proposed for computing force coefficients as a function of Re and e/D for a cylinder in the vicinity of a moving plane wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A variant of immersed boundary‐lattice Boltzmann method (IB‐LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB‐LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non‐slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non‐slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The present study describes a novel approach treating freshly cleared cells when simulating incompressible flows using the immersed boundary method. The method calculates material derivative in Lagrangian coordinate system to approximate the solution at the freshly cleared cells. In this study, we use a simple test case to compare our proposed method with the commonly used one-dimensional interpolation method in the Eulerian coordinate system.  相似文献   

4.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The solutions obtained for low Reynolds‐number incompressible flows using the same flow solver and solution technique on body‐fitted, embedded surface and immersed body grids of similar size are compared. The cases considered are a sphere at Re = 100 and an idealized stented aneurysm. It is found that the solutions using all these techniques converge to the same grid‐independent solution. On coarser grids, the effect of higher‐order boundary conditions is noticeable. Therefore, if the manual labor required to set up a body‐fitted domain is excessive (as is often the case for patient‐specific geometries with medical devices), and/or computing resources are plentiful, the embedded surface and immersed body approaches become very attractive options. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
7.
This paper presents the results of numerical simulations of vortex shedding past a free-standing square cylinder at ReD=22 000, obtained with different turbulence models. Using wall functions, the standard k–ε model is compared with a modification suggested by Kato and Launder (Proc. 9th Symp. Turbulent Shear Flows, Kyoto, 10-4-1 (1993)). In addition, both versions are used in a two-layer approach, in which the flow close to the cylinder is computed with a locally more suitable one-equation turbulence model and only outside the viscous near-wall layer with the two mentioned high-Re model versions. To allow a comparison, the simulations are performed first using the same computational domain and boundary conditions as in previous investigations. Then results are presented that were obtained on a computational domain and with boundary conditions more suitable for a comparison with the experiments. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of cylinder aspect ratio (??H/d, where H is the cylinder height or length, and d is the cylinder diameter) on the drag of a wall-mounted finite-length circular cylinder in both subcritical and critical regimes is experimentally investigated. Two cases are considered: a smooth cylinder submerged in a turbulent boundary layer and a roughened cylinder immersed in a laminar uniform flow. In the former case, the Reynolds number Re d (??U ?? d/??, with U ?? being the free-stream velocity and ?? the fluid viscosity) was varied from 2.61?×?104 to 2.87?×?105, and two values of H/d (2.65 and 5) were examined; in the latter case, Re d ?=?1.24?×?104?C1.73?×?105 and H/d?=?3, 5 and 7. In the subcritical regime, both the drag coefficient C D and the Strouhal number St are smaller than their counterparts for a two-dimensional cylinder and reduce monotonously with decreasing H/d. The presence of a turbulent boundary layer causes an early transition from the subcritical to critical regime and considerably enlarges the Re d range of the critical regime. No laminar separation bubble occurs on the finite-length cylinder immersed in the turbulent boundary layer, and consequently, the discontinuity is not observed in the C D?CRe d and St?CRe d curves. In the roughened cylinder case, the Re d range of the critical regime grows gradually with decreasing H/d, while the C D crisis becomes less obvious. In both cases, H/d has a negligible effect on the critical value of Re d at which transition occurs from the subcritical to critical regime.  相似文献   

9.
Three‐dimensional direct numerical simulation results of flow past a circular cylinder are influenced by numerical aspects, for example the spanwise domain length and the lateral boundary condition adopted for the simulation. It is found that inappropriate numerical set‐up, which restricts the development of intrinsic wake structure, leads to an over‐prediction of the onset point of the secondary wake instability (Recr). A best practice of the numerical set‐up is presented for the accurate prediction of Recr by direct numerical simulation while minimizing the computational cost. The cylinder span length should be chosen on the basis of the intrinsic wavelength of the wake structure to be simulated, whereas a long span length is not necessary. For the wake transitions above Recr, because the wake structures no longer follow particular wavelengths but become disordered and chaotic, a span length of more than 10 cylinder diameters (approximately three times the intrinsic wavelength) is recommended for the simulations to obtain wake structures and hydrodynamic forces that are not strongly restricted by the numerical set‐up. The performances of the periodic and symmetry lateral boundary conditions are compared and discussed. The symmetry boundary condition is recommended for predicting Recr, while the periodic boundary condition is recommended for simulating the wake structures above Recr. The general conclusions drawn through a circular cylinder are expected to be applicable to other bluff body configurations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
We present an improved immersed boundary method for simulating incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. To achieve a large Courant–Friedrichs–Lewy number and to transfer quantities between Eulerian and Lagrangian domains effectively, we combined the feedback forcing scheme of the virtual boundary method with Peskin's regularized delta function approach. Stability analysis of the proposed method was carried out for various types of regularized delta functions. The stability regime of the 4‐point regularized delta function was much wider than that of the 2‐point delta function. An optimum regime of the feedback forcing is suggested on the basis of the analysis of stability limits and feedback forcing gains. The proposed method was implemented in a finite‐difference and fractional‐step context. The proposed method was tested on several flow problems, including the flow past a stationary cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse oscillation of a circular cylinder in a free‐stream. The findings were in excellent agreement with previous numerical and experimental results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A numerical method is developed for modelling the interactions between incompressible viscous fluid and moving boundaries. The principle of this method is introducing the immersed‐boundary concept in the framework of the lattice Boltzmann method, and improving the accuracy and efficiency of the simulation by refining the mesh near moving boundaries. Besides elastic boundary with a constitutive law, the method can also efficiently simulate solid moving‐boundary interacting with fluid by employing the direct forcing technique. The method is validated by the simulations of flow past a circular cylinder, two cylinders moving with respect to each other and flow around a hovering wing. The versatility of the method is demonstrated by the numerical studies including elastic filament flapping in the wake of a cylinder and fish‐like bodies swimming in quiescent fluid. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Vineeth  V. K.  Patel  D. K. 《Fluid Dynamics》2022,56(1):S101-S125

The wake characteristics of a custom-designed airfoil performing pitching oscillations, heaving oscillations, and a combination of pitch and heave oscillations are compared in this study. The influence of flapping parameters are investigated at a constant Reynolds number Re\(_{c} = 2640\) and is presented for the Strouhal numbers based on the oscillation amplitude, StA, varying in the \(0.1 \leqslant {\text{S}}{{{\text{t}}}_{A}} \leqslant 0.4\) range. The generation of vorticity above and below the airfoil depends on the airfoil’s initial direction of motion and remains the same for all types of flapping oscillations investigated. The evolution of the leading-edge and trailing-edge vortices is presented. The heaving oscillations of the airfoil are found to have a greater influence on the characteristics of the leading edge vortex. The wake behind the combined pitch-heave oscillations appears to be governed by pitching oscillations below \({\text{S}}{{{\text{t}}}_{A}} = 0.24\), whereas it is driven by heaving oscillations above \({\text{S}}{{{\text{t}}}_{A}} = 0.24\). The force computations indicate that the mere existence of the reverse von Kármán street is not sufficient to develop the thrust on the airfoil. The periodic component of velocity fluctuations significantly influences the wake characteristics. The anisotropic stress field developed around the airfoil due to the periodic fluctuations of the velocity is presented. The coherent structures developed in the wake are identified using the proper orthogonal decomposition and a qualitative comparison of the structures for different flapping oscillations is presented. The energy transfer from the flapping airfoil to the fluid for different flapping oscillations is highest for heaving oscillations followed by combined pitch-heave oscillations and pitching oscillations.

  相似文献   

14.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

15.
Free vibrations of a circular cylinder of low non-dimensional mass are investigated at low Reynolds numbers. Computations are carried out for 5% blockage. Lock-in is observed for a range of Re and is accompanied with hysteresis at both lower as well as higher Re ends of the synchronisation/lock-in region. It is well known that the lock-in regime for free vibrations depends on the non-dimensional mass of the oscillator. The results from the present computations are compared with the data for forced vibrations from Koopmann (Journal of Fluid Mechanics, 28, 501–512, 1967) on a Y max/D vs. f* plot, where Y max is the maximum oscillation amplitude and f* is the ratio of cylinder vibration frequency to the vortex shedding frequency for a stationary cylinder. Good agreement is observed for the critical amplitude needed for onset of synchronisation between the forced and free vibrations. The results from the free vibrations are compared to the predictions from the linear oscillator model by assuming that the forces on the cylinder are unaffected as a result of vibrations. It is found that, for low mass oscillators, the modification of vortex shedding frequency and lift coefficient due to cylinder oscillations leads to the enhancement of the lock-in regime.  相似文献   

16.
In this paper, the interaction fluid–rigid body is analysed by a finite element procedure that incorporates the arbitrary Lagrangian–Eulerian (ALE) method into a well‐known two‐step projection scheme. The flow is assumed to be two‐dimensional, incompressible and viscous, with no turbulence models being included. The flow past a circular cylinder at ℛℯ=200 is first analysed, for fixed and oscillating conditions. The dependence of lock‐in upon the shift between the mechanical and the Strouhal frequencies, for a given amplitude of forced vibration, is illustrated. The aerodynamic forces and the wake geometry are compared for locked‐in conditions with different driving frequencies. The behaviour of a rectangular cylinder (B/D=4) at ℛℯ=500 (based on height D) is also analysed. The flutter derivatives associated with aerodynamic damping (H1* and A2* in Scanlan's notation) are evaluated by the free oscillation method for several values of reduced flow speed above the Strouhal one (namely for 3≤U*≤8). Torsional flutter was attained at U*≥5, with all the other situations showing stable characteristics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
An experimental study on the flow of non-Newtonian fluids around a cylinder was undertaken to identify and delimit the various shedding flow regimes as a function of adequate non-dimensional numbers. The measurements of vortex shedding frequency and formation length (lf) were carried out by laser-Doppler anemometry in Newtonian fluids and in aqueous polymer solutions of CMC and tylose. These were shear thinning and elastic at weight concentrations ranging from 0.1 to 0.6%. The 10 and 20 mm diameter cylinders (D) used in the experiments had aspect ratios of 12 and 6 and blockage ratios of 5 and 10%, respectively. The Reynolds number (Re*) was based on a characteristic shear rate of U/(2D) and ranged from 50 to 9×103 thus encompassing the laminar shedding, the transition and shear-layer transition regimes. Increasing fluid elasticity reduced the various critical Reynolds numbers (Reetr*, Relf*, Rebbp*) and narrowed the extent of the transition regime. For the 0.6% tylose solution the transition regime was even suppressed. On the other end, pseudoplasticity was found to be indirectly responsible for the observed reduction in Reotr*: it increases the Strouhal number which in turn increases the vortex filaments, precursors of the transition regime. Elasticity was better quantified by the elasticity number Re′/We than by the Weissenberg number. This elasticity number involves the calculation of the viscosity at a high characteristic shear rate, typical of the boundary layer, rather than at the average value (U/(2D)) used for the Reynolds number, Re*.  相似文献   

20.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号