首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space‐filling quasi‐direct numerical simulations (QDNS), which sample the response of near‐wall turbulence to large‐scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse‐grid LES, with the equivalent of wall functions supplied by the near‐wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ=4200 and 20000. The total grid point count for the first case is less than half a million and less than 2 million for the second case, with the calculations only requiring a desktop computer. A good agreement with published direct numerical simulation (DNS) is found at Reτ=4200, both in the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near‐wall turbulence levels due to a modulation of near‐wall streaks by large‐scale structures. The trend continues at Reτ=20000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES‐QDNS coupling strategy and subgrid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.  相似文献   

2.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Turbulent cavitating flow computations need to address both cavitation and turbulence modelling issues. A recently developed interfacial dynamics‐based cavitation model (IDCM) incorporates the interfacial transport into the computational modelling of cavitation dynamics. For time‐dependent flows, it is known that the engineering turbulence closure such as the original kε model often over‐predicts the eddy viscosity values reducing the unsteadiness. A recently proposed filter‐based modification has shown that it can effectively modulate the eddy viscosity, rendering better simulation capabilities for time‐dependent flow computations in term of the unsteady characteristics. In the present study, the IDCM along with the filter‐based kε turbulence model is adopted to simulate 2‐D cavitating flows over the Clark‐Y airfoil. The chord Reynolds number is Re=7.0 × 105. Two angles‐of‐attack of 5 and 8° associated with several cavitation numbers covering different flow regimes are conducted. The simulation results are assessed with the experimental data including lift, drag and velocity profiles. The interplay between cavitation and turbulence models reveals substantial differences in time‐dependent flow results even though the time‐averaged characteristics are similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a 2‐D large eddy simulation (LES) modelling approach to investigate the properties of the plunging waves. The numerical model is based on the smoothed particle hydrodynamics (SPH) method. SPH is a mesh‐free Lagrangian particle approach which is capable of tracking the free surfaces of large deformation in an easy and accurate way. The Smagorinsky model is used as the turbulence model due to its simplicity and effectiveness. The proposed 2‐D SPH–LES model is applied to a cnoidal wave breaking and plunging over a mild slope. The computations are in good agreement with the documented data. Especially the computed turbulence quantities under the breaking waves agree better with the experiments as compared with the numerical results obtained by using the k–ε model. The sensitivity analyses of the SPH–LES computations indicate that both the turbulence model and the spatial resolution play an important role in the model predictions and the contributions from the sub‐particle scale (SPS) turbulence decrease with the particle size refinement. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A variational multiscale method for computations of incompressible Navier–Stokes equations in time‐dependent domains is presented. The proposed scheme is a three‐scale variational multiscale method with a projection‐based scale separation that uses an additional tensor valued space for the large scales. The resolved large and small scales are computed in a coupled way with the effects of unresolved scales confined to the resolved small scales. In particular, the Smagorinsky eddy viscosity model is used to model the effects of unresolved scales. The deforming domain is handled by the arbitrary Lagrangian–Eulerian approach and by using an elastic mesh update technique with a mesh‐dependent stiffness. Further, the choice of orthogonal finite element basis function for the resolved large scale leads to a computationally efficient scheme. Simulations of flow around a static beam attached to a square base, around an oscillating beam and around a plunging aerofoil are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A family of flux‐continuous, locally conservative, finite‐volume schemes has been developed for solving the general geometry‐permeability tensor (petroleum reservoir‐simulation) pressure equation on structured and unstructured grids and are control‐volume distributed (textit Comput. Geo. 1998; 2 :259–290; Comput. Geo. 2002; 6 :433–452). The schemes are applicable to diagonal and full tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir‐simulation schemes (two‐point flux approximation) when applied to full tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization (Int. J. Numer. Meth. Fluids 2006; 51 :1177–1203). Improved convergence (for two‐ and three‐dimensional formulation) using the quadrature parameterization has been observed for the family of flux‐continuous control‐volume distributed multi‐point flux approximation (CVD‐MPFA) schemes (Ph.D. Thesis, University of Wales, Swansea, U.K., 2007). In this paper family of flux‐continuous (CVD‐MPFA) schemes are used as a part of numerical upscaling procedure for upscaling the fine‐scale grid information (permeability) onto a coarse grid scale. A series of data‐sets (SPE, 2001) are tested where the upscaled permeability tensor is computed on a sequence of grid levels using the same fixed range of quadrature points in each case. The refinement studies presented involve:
  • (i) Refinement comparison study: In this study, permeability distribution for cells at each grid level is obtained by upscaling directly from the fine‐scale permeability field as in standard simulation practice.
  • (ii) Refinement study with renormalized permeability: In this refinement comparison, the local permeability is upscaled to the next grid level hierarchically, so that permeability values are renormalized to each coarser level. Hence, showing only the effect of increased grid resolution on upscaled permeability, compared with that obtained directly from the fine‐scale solution.
  • (iii) Refinement study with invariant permeability distribution: In this study, a classical mathematical convergence test is performed. The same coarse‐scale underlying permeability map is preserved on all grid levels including the fine‐scale reference solution.
The study is carried out for the discretization of the scheme in physical space. The benefit of using specific quadrature points is demonstrated for upscaling in this study and superconvergence is observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Computational results for flow past a two‐dimensional model of a ram‐air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well‐proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The Baldwin–Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck‐Y airfoil without a leading edge cut, for α=7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift‐to‐drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift‐to‐drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time‐averaged values are quite similar. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Three kinds of two‐level consistent splitting algorithms for the time‐dependent Navier–Stokes equations are discussed. The basic technique of two‐level type methods for solving the nonlinear problem is first to solve a nonlinear problem in a coarse‐level subspace, then to solve a linear equation in a fine‐level subspace. Hence, the two‐level methods can save a lot of work compared with the one‐level methods. The approaches to linearization are considered based on Stokes, Newton, and Oseen corrections. The stability and convergence demonstrate that the two‐level methods can acquire the optimal accuracy with the proper choice of the coarse and fine mesh scales. Numerical examples show that Stokes correction is the simplest, Newton correction has the best accuracy, while Oseen correction is preferable for the large Reynolds number problems and the long‐time simulations among the three methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Shallow‐water flow with free surface frequently occurs in ambient water bodies, in which the horizontal scale of motion is generally two orders of magnitude greater than the water depth. To accurately predict this flow phenomenon in more detail, a three‐dimensional numerical model incorporating the method of large eddy simulation (LES) has been developed and assessed. The governing equations are split into three parts in the finite difference solution: advection, dispersion and propagation. The advection part is solved by the QUICKEST scheme. The dispersion part is solved by the central difference method and the propagation part is solved implicitly using the Gauss–Seidel iteration method. The model has been applied to free surface channel flow for which ample experimental data are available for verification. The inflow boundary condition for turbulence is generated by a spectral line processor. The computed results compare favourably with the experimental data and those results obtained by using a periodic boundary condition. The performance of the model is also assessed for the case in which anisotropic grids and filters with horizontal grid size of the order of the water depth are used for computational efficiency. The coarse horizontal grid was found to cause a significant reduction in the large‐scale turbulent motion generated by the bottom turbulence, and the turbulent motion is predominately described by the sub‐grid scale (SGS) terms. The use of the Smagorinsky model for SGS turbulence in this situation is found inappropriate. A parabolic mixing length model, which accounts for the filtered turbulence, is then proposed. The new model can reproduce more accurately the flow quantities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
High‐speed compressible turbulent flows typically contain discontinuities and have been widely modeled using Weighted Essentially Non‐Oscillatory (WENO) schemes due to their high‐order accuracy and sharp shock capturing capability. However, such schemes may damp the small scales of turbulence and result in inaccurate solutions in the context of turbulence‐resolving simulations. In this connection, the recently developed Targeted Essentially Non‐Oscillatory (TENO) schemes, including adaptive variants, may offer significant improvements. The present study aims to quantify the potential of these new schemes for a fully turbulent supersonic flow. Specifically, DNS of a compressible turbulent channel flow with M = 1.5 and Reτ = 222 is conducted using OpenSBLI, a high‐order finite difference computational fluid dynamics framework. This flow configuration is chosen to decouple the effect of flow discontinuities and turbulence and focus on the capability of the aforementioned high‐order schemes to resolve turbulent structures. The effect of the spatial resolution in different directions and coarse grid implicit LES are also evaluated against the WALE LES model. The TENO schemes are found to exhibit significant performance improvements over the WENO schemes in terms of the accuracy of the statistics and the resolution of the three‐dimensional vortical structures. The sixth‐order adaptive TENO scheme is found to produce comparable results to those obtained with nondissipative fourth‐ and sixth‐order central schemes and reference data obtained with spectral methods. Although the most computationally expensive scheme, it is shown that this adaptive scheme can produce satisfactory results if used as an implicit LES model.  相似文献   

16.
Many problems of interest are characterized by 2 distinctive and disparate scales and a huge multiplicity of similar small‐scale elements. The corresponding scale‐dependent solvability manifests itself in the high gradient flow around each element needing a fine mesh locally and the similar flow patterns among all elements globally. In a block spectral approach making use of the scale‐dependent solvability, the global domain is decomposed into a large number of similar small blocks. The mesh‐pointwise block spectra will establish the block‐block variation, for which only a small set of blocks need to be solved with a fine mesh resolution. The solution can then be very efficiently obtained by coupling the local fine mesh solution and the global coarse mesh solution through a block spectral mapping. Previously, the block spectral method has only been developed for steady flows. The present work extends the methodology to unsteady flows of short temporal and spatial scales (eg, those due to self‐excited unsteady vortices and turbulence disturbances). A source term–based approach is adopted to facilitate a two‐way coupling in terms of time‐averaged flow solutions. The global coarse base mesh solution provides an appropriate environment and boundary condition to the local fine mesh blocks, while the local fine mesh solution provides the source terms (propagated through the block spectral mapping) to the global coarse mesh domain. The computational method will be presented with several numerical examples and sensitivity studies. The results consistently demonstrate the validity and potential of the proposed approach.  相似文献   

17.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a generalization of the incompressible Oldroyd‐B model based on a thermodynamic framework within which the fluid can be viewed to exist in multiple natural configurations. The response of the fluid is viewed as a combination of an elastic component and a dissipative component. The dissipative component leads to the evolution of the underlying natural configurations, while the response from the natural configuration to the current configuration is considered elastic and therefore non‐dissipative. For an incompressible fluid, it is necessary that both the elastic behavior as well as the dissipative behavior is isochoric. This is achieved by ensuring that the determinant of the stretch tensor associated with the elastic response meets the constraint that its determinant is unity. A new stabilized mixed method is developed for the velocity, pressure and the kinematic tensor fields. Analytical models for fine scale fields are derived via the solution of the fine‐scale equations facilitated by the Variational Multiscale framework that are then variationally embedded in the coarse‐scale variational equations. The resulting method inherits the attributes of the classical SUPG and GLS methods, while a significant new contribution is that the form of the stabilization tensors is explicitly derived. A family of linear and quadratic tetrahedral and hexahedral elements is developed with equal‐order interpolations for the various fields. Numerical tests are presented that validate the incompressibility of the elastic stretch tensor, show optimal L2 convergence for the conformation tensor field, and present stable response for high Weissenberg number flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°–13.6° (shallow-stall kinematics) and ?6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge–separated flows.  相似文献   

20.
This paper presents a new heterogeneous multiscale modeling method for porous media flows. Physics at the global level is governed by one set of PDEs, while features in the solution that are beyond the resolution capacity of the global model are accounted for by the next refined set of governing equations. In this method, the global or coarse model is given by the Darcy equation, while the local or refined model is given by the Darcy–Stokes equation. Concurrent domain decomposition where global and local models are applied to adjacent subdomains, as well as overlapping domain decomposition where global and local models coexist on overlapping domains, is considered. An interface operator is developed for the case where global and local models commute along the common interface. For the overlapping decomposition, a residual‐based coupling technique is developed that consistently facilitates bottom‐up embedding of scale effects from the local Darcy–Stokes model into the global Darcy model. Numerical results are presented for nonoverlapping and overlapping domain decompositions for various benchmark problems. Computed results show that the hierarchically coupled models accurately account for the heterogeneity of the medium and efficiently incorporate local features into the global response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号