首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   

2.
《Electroanalysis》2017,29(9):2019-2026
Nanostructured platinum‐iridium alloy microelectrode with high surface area was successfully prepared by applying successive potential cycles to a conventional PtIr microdisc in ionic liquid electrolyte containing ZnCl2 at elevated temperature. Scanning‐electron microscope studies show that a very thin nanostructured film was created on the electrode upon 20 potential cycles between −2.0 and 0.75 V versus a Ag pseudo‐reference electrode. The film nanostructures are characteristic of regular hill‐like nano‐spacings separated by valley‐like nano‐cracks, and a roughness factor of approximately 40. The nanostructured electrode is highly active towards electrochemical oxidation of ammonia, and generates a linear relation between voltammetric peak currents (or chronoamperometric currents), and logarithm of ammonia concentration in a range of approximately 1 ppm to 10000 ppm. It has been proposed that the Temkin adsorption of ammonia from the bulk solution onto the electrode surfaces was involved in its electrochemical oxidation and could be responsible for the linear current‐logarithmic concentration relation.  相似文献   

3.
It is believed that voltammetry of undiluted red‐ox liquids can lead to the formation of stable thin layers of ionic liquids at the microelectrode surface. Such situation was postulated for several liquids (solvents), however, so far no hard evidence supporting this expectation was obtained. By using electron spin resonance in combination with voltammetric experiments and electrochemical impedance spectroscopy we have shown that the concentration of the cation radicals at the microelectrode surface may be high (nitrobenzene) and the overall resistance of the solution abruptly drops (methanol) when the potential at the microelectrode corresponds to the wave plateau of the undiluted organic liquid. Both facts constitute a good evidence for the formation of microlayers of ionic liquids at the microelectrode surface during electrolysis of undiluted red‐ox systems.  相似文献   

4.
N‐Nnitrosodiphenylamine (NDPhA) is a typical kind of nonvolatile nitrosamine. Its electrochemical oxidation occurs usually at relative positive potentials (>1.1 V) even at catalytic noble metal electrodes in aqueous solutions. The formation of oxide and evolution of oxygen at such high potentials makes the analysis of NDPhA on noble metal electrodes difficult. Accordingly, its electrochemical analysis is usually performed in anhydrous organic electrolytes. In this work, room temperature ionic liquid [BMIM+] [BF ] acting as electrolyte was introduced in this electrochemical analysis systems. It acts as supporting electrolyte itself, has good solubility of organic compounds, and allows a wide performance potential window of noble electrode, and in turn, highly electrocatalytic noble electrode of platinum or gold can be used as working electrodes. After the investigation of the electrocatalytic behavior of NDPhA at a gold electrode in this room temperature ionic liquid electrolyte, high sensitive determination of NDPhA was designed. It is demonstrated that the electrochemical response of NDPhA is determined by a surface‐controlled process. Therefore, a sensor with high sensitivity was constructed by applying porous Au electrodes with highly electrocatalytic activity and large active surface area. The present approach on one hand broadens the application field of room temperature ionic liquids, and on the other hand provides a sensitive analytical method for environmental detection.  相似文献   

5.
对比研究了天然石墨在室温离子液体和有机电解液中的嵌脱锂性质, 探讨了添加剂提高天然石墨在离子液体电解液中电化学性质的微观机制.  相似文献   

6.
采用线性扫描伏安法和循环伏安法研究了芦丁在亲水性离子液体1-丁基-3-甲基四氟硼酸盐([bmim]BF4)中的电化学行为, 讨论了扫描速度、富集时间及温度等因素对其电化学行为的影响. 结果表明, 芦丁在[bmim]BF4中的电极过程是一个受吸附控制的准可逆过程, 电子转移数为2, 标准速率常数ks=0.126 s-1. 同时, 分别考察了水及乙醇对芦丁氧化还原特性的影响, 结果发现, 随着水或乙醇含量的增加, 芦丁的峰电位负移, 峰电流增加, 且水的影响比乙醇的影响明显. 在离子液体-水体系中, 芦丁的峰电流与浓度在4.0×10-5~1.4×10-4 mol/L范围内呈良好的线性关系, 检出限为1.0×10-5 mol/L, 有望用于芦丁含量的分析测定.  相似文献   

7.
室温离子液体(RTILs)具有电压窗口高等优点,被认为是实现超级电容高性能储能的绿色电解液。但是,离子液体的电导率低、粘度高,使得其储能性能不佳。本文探究了溶剂效应对离子液体超级电容储能性能的影响。以石墨烯粉末为活性材料,选取1-丁基-3-甲基咪唑四氟硼酸盐为离子液体,通过添加乙腈溶剂配置了具有不同摩尔分数ρIL的电解液(从0.25到1.0)。结果表明,溶剂效应对超级电容性能的影响与电压扫描速率或电流密度密切相关。低扫描速率下,溶剂对储能基本没有影响,而高扫描速率下,添加溶剂可显著提升比电容(在ρIL=0.25时,增加~2倍)。这是由于溶剂削弱了离子-离子间交互作用,从而降低了电解液粘度(~29倍),内阻(~5.5倍)和介电弛豫时间(~6.3倍)。在ρIL=0.25时,超级电容最大能量和功率密度分别为65.2 Wh·kg~(-1)和18066.6 W·kg~(-1),显著优于近期文献报道结果。特别地,当工作温度提升到50°C时,其能量密度将达到85.5 Wh·kg~(-1),显著高于传统水系、有机电解液超级电容和铅酸电池,与镍金属氢化物和锂离子电池性能相当。  相似文献   

8.
In the present study a chitosan/ionic liquid modified pencil graphite electrode (CHIT‐IL‐PGEs) was developed for the first time for enhanced electrochemical monitoring of nucleic acid, and the interaction of the anticancer drug Mitomycin C (MC) and calf thymus double stranded DNA (dsDNA) by measuring the oxidation signals of MC and guanine in the same voltammetric scale. Differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to evaluate the performance of the CHIT‐IL based biosensor on electrochemical monitoring of DNA, and drug‐DNA interaction. The experimental parameters, IL, dsDNA and MC concentration and the interaction time were then optimized.  相似文献   

9.
Polythiophene(PTh)films were prepared by the direct electropolymerization of thiophene in the ionic liquid,1-butyl-3-methylimidazolium hexafluorophosphate(BMIM)PF6 . The structure and morphology of PTh films were characterized by means of the FT-IR spectrum and the scanning electron microscopy( SEM). The electrical and electrochemical properties of PTh films were examined with the UV-Vis spectrum,cyclic voltammetry(CV) and four-probe method. The results showed that when the potential for electropolymerization was controlled between +1.7 and +1.9 V(vs. Ag/AgCl),very homogeneous PTh films could be prepared in the ionic liquid (BMIM)PF6 used as solvent and electrolyte. The de-doping(reduction)and re-doping(re-oxidation)of the PTh film prepared in ionic liquid are reversible and stable,and the conductivity of PTh films is 0.01-0.1 S/cm.  相似文献   

10.
The electrochemistry of indium species was investigated at glassy carbon, tungsten and nickel electrodes in a basic 1‐ethyl‐3‐methylimidazolium chloride/tetrafluoroborate ionic liquid. Amperometric titration experiments suggest that In(III) chloride is complexed as [InCl5]2? in this ionic liquid. The electrochemical reduction of [InCl5]2? to indium metal is preceded by overpotential driven nucleations. The effective anodic dissolution of indium to indium(III) requires, however, the presence of sufficient chloride ions at the electrode surface. The electrodeposition of indium at glassy carbon and tungsten electrodes proceeds via three‐dimensional instantaneous nucleation with diffusion‐controlled growth of the nuclei. At the nickel electrode, the deposition proceeds via three‐dimensional progressive nucleation with diffusion‐controlled growth of the nuclei. Raising the deposition temperature decreases the average radius of the individual nuclei, r. Scanning electron microscopic and x‐ray diffraction data indicated that bulk crystalline indium electrodeposits could be prepared on nickel substrates within a temperature range between 30 and 120 °C.  相似文献   

11.
离子液体BMIMBF4-H2O中邻氯硝基苯的电化学还原性能   总被引:3,自引:0,他引:3  
以离子液体BMIMBF4为溶剂和支持电解质, H2O为氢源, 采用循环伏安法、交流阻抗法研究邻氯硝基苯在Cu微盘电极上的电化学还原性能. 研究结果表明, 邻氯硝基苯在离子液体中是一个受扩散控制的反应; 由不同极化电位下的电化学阻抗谱可看出, 在高频区主要是以电化学极化控制为主, 在低频区出现直线表明电化学反应受反应物质扩散控制, 表明该电化学反应是受电化学极化和反应物扩散联合控制, 随电位负移, 电极表面电荷传质的容抗弧逐渐减小, 反应更易进行; 在电解合成实验中, 在最优条件下(E=-0.9 V, c=74.4 mmol/L, Q=517.6 C)得到的产率(86.2%)最高, 比同类反应中电化学合成文献报道值高.  相似文献   

12.
In recent years, ionic liquids have attracted much attention as useful synthetic solvents. Compared with classical molecular solvents, the ionic liquids are environmentally benign reaction media. A variety of quinoline derivatives have been synthesized under ionic liquid conditions using Amberlyst‐15 as catalyst.  相似文献   

13.
Iodobenzene‐catalyzed synthesis of imidazo[1,2‐a]pyridines from aryl ketones with mCPBA as a cooxidant in ionic liquid is described. The method is simple, rapid and practical, generating Imidazo[1,2‐a]pyridines from the aryl ketone without isolation of α‐tosyloxyketones in good to excellent yields.  相似文献   

14.
A novel and highly sensitive electrochemical immunosensor was developed for the detection of protein biomarker tumor necrosis factor‐alpha (TNF‐α) based on immobilization of TNF‐α‐antibody (anti‐TNF‐α) onto robust nanocomposite containing gold nanoparticles (AuNP), multiwalled carbon nanotubes (MWCNTs) and ionic liquid (1‐buthyl‐3‐methylimidazolium bis (trifluoromethyl sulfonyl)imide). Functionalized MWCNT‐gold nanoparticle was produced by one‐step synthesis based on the direct redox reaction. The electrochemical properties of nanocomposite were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The anti‐TNF‐α was immobilized or entrapped in the nanocomposite and used in a sandwich type complex immunoassay with anti‐TNF‐α labeled with horseradish peroxidase as secondary antibody. Under optimum conditions, the immunosensor could detect TNF‐α in a linear range from 6.0 to 100 pg mL?1 with a low detection limit of 2.0 pg mL?1. The simple fabrication method, high sensitivity, good reproducibility, stability, as well as acceptable accuracy for TNF‐α detection in human serum samples are the main advantages of this immunosensor, which might have broad applications in protein diagnostics and bioassay.  相似文献   

15.
Hydroformylation of oct‐1‐ene leading to nonanal (denoted by n) and 2‐methyloctanal (denoted by iso), in a novel series of caprolactam‐based and common imidazolium‐based ionic liquid crystals (ILCs; see Fig. 1) carried out for the first time (caprolactam=hexahydro‐2H‐azepin‐2‐one) (Scheme). Variation of the chain length (n) of the alkyl substituent (Cn) at the caprolactam cation (CP+) from n=12 to 18 caused the n/iso ratios to vary from 1.7 to 2.9. Meanwhile, the TOF (turnover frequency) decreased from 148 to 122 mol mol−1 h−1. Hydroformylation in the imidazolium‐based ILCs revealed that [C16MIm]⋅BF4 (n/iso 5.2, TOF 969 mol mol−1 h−1) was more favorable than [C16MIm]⋅MsO (n/iso 3.7, TOF 969 mol mol−1 h−1) for the formation of the unbranched aldehyde. Although the n/iso ratio in caprolactam‐based ILCs was lower than that in imidazolium‐based ILCs, the conversions are higher in the former ILCs on the whole. It should be noted that the lamellar mesophase has a strong effect on the regioselectivity and TOF of the hydroformylation. Also, it is evident that the influences of different ILCs on the hydroformylation under the various reaction conditions are greatly different. The identification of the reaction products was established by GC and GC/MS analyses.  相似文献   

16.
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries.  相似文献   

17.
A new and efficient method for the synthesis of 4‐aryl‐2‐phenyloxazoles is described which is based upon the reaction of α‐[(2,4‐dinitrobenzene)sulfonyl]oxy ketone intermediates with benzamide in ionic liquid.  相似文献   

18.
Pd nanoparticles with an average diameter of 5 nm were decorated on the surface of ionic liquid derived fibrillated mesoporous carbon (IFMC) to prepare a novel nano‐hybrid material (Pd@IFMC). Thereafter, glucose oxidase was immobilized on Pd@IFMC modified glassy carbon electrode to fabricate an enzymatic glucose biosensor. A pair of well‐defined redox peaks was recorded for direct electron transfer of the immobilized glucose oxidase at the formal potential of ? 0.418 V with a peak to peak separation of 25 mV. Electron transfer rate constant of was calculated to be 14.6 s?1. The response of fabricated biosensor was linear towards glucose concentration.  相似文献   

19.
The room temperature ionic liquid n‐butylpyridinium tetrafluoroborate (BPyBF4) is used as a ‘green’ recyclable alternative to classical molecular solvents for the cyclocondensation of α‐tosyloxyketones with 1‐aminoisoquinoline to prepare imidazo[2,1‐a]isoquinolines in good yields.  相似文献   

20.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号