首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method.  相似文献   

2.
Synthesis and Crystal Structure of the Spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 The reaction of (i-Pr)2P(S)N(SiMe3)2 ( 1 ) with SnCl4 in 2:1 ratio yields under elimination of ClSiMe3 the four-membered spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 ( 2 ). The molecular structure of 2 was investigated by an X-ray structure analysis. Compound 2 crystallises in the monoclinic space group P21, Z = 2, a = 938.1(1), b = 1 424.1(2), c = 1 207.2(1) pm, β = 110.59(1)°, R = 2.05% for 4 102 reflexions. Compound 2 is a spirocycle with two Sn? N? P? S-rings joined at tin. The two rings are in cis-position.  相似文献   

3.
Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.  相似文献   

4.
Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three‐ and two‐component synthesis catalyzed by gold compounds and nanoparticles (Au‐NP) under mild conditions. The use of dichloromethane allows for the activation of two C? Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cycloaurated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.  相似文献   

5.
Methacrylic copolymers with a hydroxyl group on one end of the main chain and nona‐1‐butoxytrititanosiloxane as side groups (called methacrylic hybrid copolymers) were synthesized for use as baked‐finish‐type coating resins. The chemical structures of the side groups in the methacrylic hybrid copolymers were confirmed with the ash weight of the copolymers after combustion, the elemental ratio analysis of Si and Ti in the ash determined by inductively coupled plasma emission spectrometry, and the characteristic absorption band determined by Fourier transform infrared spectrophotometry. The methacrylic hybrid copolymers were cured at temperatures less than 150 °C in the absence of a curing accelerator. The cured copolymers exhibited a high thermal stability. The curing temperature of the copolymers was determined by the change in the absorption peak strength (peak area) of the 1655 cm−1 band in the IR difference spectrum. The thermal stability of the copolymers was evaluated as the thermal‐degradation temperature measured by thermogravimetric analysis. The methacrylic hybrid copolymers were then be used as effective curing resins. The mixture, consisting of thermoplastic methacrylic terpolymer with hydroxyl and carboxyl groups and the methacrylic hybrid copolymers, were cured at less than 150 °C in the absence of a curing accelerator and exhibited a higher thermal‐degradation temperature than the copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1090–1098, 2001  相似文献   

6.
7.
An electrochemical anodic adsorptive stripping procedure for ultra‐trace assay of 3‐hydroxyflavone (3HF) and Morin at a renewable pencil electrode (PGE) in bulk form and in biological fluids is described. The nature of the oxidation process of 3HF and Morin taking place at the PGE was characterized by cyclic voltammetry. The results show that the determination of the oxidation peak current is the basis of a simple, accurate and rapid method for quantification of 3HF by square‐wave anodic stripping voltammetry. Determination of Morin was achieved by square‐wave anodic adsorptive stripping voltammetry of the formed Morin? Cu(II) complex at a PGE. Factors influencing the trace measurements of 3HF and the Morin? Cu (II) complex at a PGE are assessed. The limits of detection and quantitation for the determination of 3HF and Morin in bulk form and in biological fluids were determined. The statistical analysis and the calibration curve data for trace determination of 3HF and Morin are reported.  相似文献   

8.
9.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

10.
The induced codeposition mechanism of Mo, P and Ni from the solution of ammoniac citrate was studied by means of steady-state polarization, AC impedance and X-ray Photoelectron Spectroscopy (XPS). The result of electrochemical measurements proved that [NiCit(NHs)2]- is the electro-active species of nickel, though nickel ions exist mainly as [NiCit(NH3)3]? in ammoniac citrate. XPS experiments proved the existence of tetravalent molybdenum corresponding to MoO2 on the surface of mme deposits. The intermediate product, MoO2, WM probably reduced to Mo in the alloy deposit by atomic hydrogen adsorbed on the induced metal nickel. The reduction of H2PO?2 occurs through two distinctive steps with PH3 an an intermediate, which subsequently reacts with atomic hydrogen to form P in the alloy deposit. The electrodeposition mechanism was proposed in this paper.  相似文献   

11.
12.
13.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

14.
Computations sho that independent N-CO rotation is not possible in N,N-diethyl-1-naphthamide, and that the coalescence signal corresponding to methyl equivalence observed in the VT NMR spectrum of this system is caused by a complex process whose rate-determining step implies concerted N-CO, Ar-CO, and ethyl rotations. The calculated Gibbs energy barriers for these processes in solution are in good agreement with the experimental values.  相似文献   

15.
16.
17.
18.
Transition-metal-catalyzed cross-coupling reactions and the Heck reaction have evolved into powerful tools for the construction of carbon-carbon bonds. In most cases, the reactive organometallic intermediates feature a carbon-transition-metal sigma bond between a sp(2)-hybridized carbon atom and the transition metal (Csp(2)--TM). New, and potentially more powerful approach to transition-metal-catalyzed asymmetric organic synthesis would arise if catalytic chiral nonracemic organometallic intermediates with a stereogenic sp(3)-hybridized carbon atoms directly bonded to the transition metal (C*sp(3)--TM bond) could be formed from racemic or achiral organic substrates, and subsequently participate in the formation of a new carbon-carbon bond (C*sp(3)-C) with retention of the stereochemical information. To date, only a few catalytic processes that are based on this concept, have been developed. In this account, both "classical" and recent studies on preparation and reactivity of stable chiral nonracemic organometallics with a metal-bonded stereogenic carbon, which provide the foundation for the future design of new synthetic transformations exploiting the outlined concept, are discussed, along with examples of relevant catalytic processes.  相似文献   

19.
Palladium(II)‐catalyzed arylation of arenes with aryl boronic acids and a free amine as directing group in aqueous medium has been developed. High reactivity and chemoselectivity for the formation of carbon–carbon bonds were achieved by the use of soluble silver salts. The addition of water is crucial to improve the arylation yield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号