首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amr Lotfy Saber 《Electroanalysis》2013,25(12):2707-2714
The present article reports for the first time the use of Aliquat 336S‐atorvastatin as an electroactive material in a poly(vinyl chloride) matrix membrane sensor plasticized with ortho‐nitrophenyl‐octylether (o‐NPOE) or dioctylphthalate (DOP) for determination of atorvastatin in biological samples (human plasma) and in pharmaceutical preparations. The sensor shows fast, stable and reproducible response over the concentration range of 1.0×10?7–1.0×10?2 mol L?1 atorvastatin with anionic slopes of 60.94±0.2 and 58.22±0.2 and pH range of 5.0–9.0 for o‐NPOE and DOP plasticized based membrane sensors, respectively. The response time of the sensor is stable and fast (10 s). Results were achieved with average recoveries of 99.5 % and 99.3 % and mean standard deviations of ±1.1 % and ±1.4 % for o‐NPOE and DOP plasticized based membrane sensors, respectively. The sensor exhibits high selectivity towards atorvastatin in the presence of many anions, drug excipients and diluents. Validation of the method according to the quality assurance standards shows suitability of the proposed sensors for use in the quality control assessment of the drug.  相似文献   

2.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

3.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   

4.
The complex [TpPh,MeNi(Cl)PzPh,MeH] ( I ) [TpPh,Me=hydrotris(3‐phenyl‐5‐methyl‐pyrazol‐1‐yl)borate; PzPh,MeH=3‐phenyl‐5‐methyl‐pyrazole] has been synthesized and explored as ionophore for the preparation of a poly(vinyl chloride) (PVC) membrane sensor for benzoate anions. The formation constants for the interaction of complex I with different organic/inorganic anions in solution have also been studied by sandwich membrane method. PVC based membranes of I using tridodecylmethylammonium chloride (TDDMACl) as cation discriminator and o‐nitrophenyloctyl ether (o‐NPOE), dibutylphthalate (DBP), benzylacetate (BA) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as benzoate selective sensors. The best performance was shown by the membrane with composition (w/w) of I (5): PVC (150): NPOE (345): TDDMACl (0.3). The proposed sensor exhibits significantly enhanced selectivity toward benzoate ions over the concentration range 2.2×10?6–1.0×10?1 M with a lower detection limit of 1.4×10?6 M and a Nernstian slope of 59.2 mVdecade?1 of activity within a pH range of 4.5–8.5. The sensor has a response time of 12 s and can be used for at least 8 weeks without any considerable divergence in their potential response. The membrane sensor of complex I have been checked for reversible and accurate sensing of benzoate levels present in liquid food products.  相似文献   

5.
The construction and performance characteristics of a new potentiometric PVC membrane sensor for the determination of sodium dodecyl sulfate (SDS) are described. The sensor was based on the use of an N-cetyl-N,N,N trimethyl ammonium (CTA) dodecyl sulfate (DS) ion pair as ion exchange sites in PVC matrix in the presence of o-nitrophenyl octylether as plasticiser. The sensor exhibited a fast, stable, and near-Nernstian response for SDS over the concentration range of 1 × 10?3 to 10?6 M at 25°C and the pH range 4–8.5 with anionic slope of 52.5 ± 0.5 mV decade?1. The lower detection limit was 3 × 10?6 M, and the response time was 25 s. Selectivity coefficients of SDS with respect to a number of different species were investigated. There were negligible interferences caused by most of the investigated anions. The determination of 1.0–280.0 µg mL?1 of SDS in aqueous solutions showed an average recovery of 99.1%, and the mean relative standard deviation was 1.4 at 100 µg mL?1. The results obtained in the determination of SDS in liquid soap, water and in some pharmaceutical preparations compared favourably with those obtained by the Methylene Blue active substance method (MBAS). In the present investigation, the DS sensor has been used as an end-point indicator electrode for some precipitation titration reactions, e.g. titration of SDS with CTMABr and cetylpyridinium chloride with SDS.  相似文献   

6.
Novel Zn2+ ion‐selective PVC based coated graphite electrodes were fabricated using the ionophores N‐((1H‐indol‐3‐yl)methylene)thiazol‐2‐amine (I1), N‐((1H‐indol‐3‐yl)methyl)‐thiazol‐2‐amine (I2) and 1‐((1H‐indol‐3‐yl)methylene)urea (I3). Their potentiometric performance was examined in dependence of the addition of plasticizers and anion excluders and compared. It is found that the coated graphite electrode with the composition I1:KTpClPB:o‐NPOE:PVC=9 : 1.5 : 51 : 38.5 is the best with respect to the wide working concentration range (4.2×10?8–1.0×10?1 mol L?1), low detection limit (1.6×10?8 mol L?1) and wide pH range of 3.0–8.0. The proposed electrode was successfully applied to quantify Zn2+ in various environmental, biological and medicinal plant samples and used as indicator electrode.  相似文献   

7.
《Electroanalysis》2005,17(24):2246-2253
Coated‐wire (CW) and tubular (Tu) type membrane sensors for creatinine are developed. These consist of creatinine tungstophosphate(CTP), creatinine molybdophosphate (CMP) and creatinine picrolonate (CPC) ion‐pair complexes as electroactive materials dispersed in plasticized poly(vinyl chloride) matrix membranes. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near‐Nernstian response with slopes of 62.9, 58.1, and 55.2 mV decade?1 over the concentration range 1×10?2–5.0×10?6, 1×10?2–7.5×10?5, and 1×10?2?3.1×10?5 mol L?1. The lower detection limits are 0.39, 3.49, and 2.20 μg mL?1 creatinine with CTP, CMP and CPC membrane based sensors plasticized with o‐NPOE, respectively. Tubular and coated wire CTP membrane sensors are incorporated in flow‐through cells and used as detectors for flow injection analysis (FIA) of creatinine. The intrinsic characteristics of the detectors under hydrodynamic mode of operation in a low dispersion manifold are determined and compared with data obtained under static mode of operation. With 10?2 mol L?1 phosphate buffer of pH 4.5 as a carrier solution, the tubular and coated wire CTP detectors exhibit rapid response of 58.9 and 50.7 mV decade?1 over the concentration range 1×10?2–1×10?5 mol L?1 and detection limits of 0.39 μg mL?1 and 0.85 μg mL?1, respectively. Validation of the assay methods with the proposed sensors by measuring the lower detection limit, range, accuracy, precision, repeatability and between‐day‐variability reveals good performance characteristics confirming applicability for continuous determination of creatinine. The sensors are used for determining creatinine in human blood serum at an input rate of 40 samples per hour. No interferences are caused by creatine, most common anions, cations and organic species normally present in biological fluids. The results favorably compare with data obtained using the standard spectrophotometric method.  相似文献   

8.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

9.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

10.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

11.
Amr L. Saber 《Electroanalysis》2010,22(24):2997-3002
Simple, selective and accurate sensors were developed for the determination of melatonin and oxomemazine in biological samples (urine) and in pharmaceutical preparations. Potentiometric measurements were based on bismus tetraiodate‐drug ion‐pair as novel electroactive materials incorporating a plasticized PVC membrane with o‐nitrophenyl octyl ether or dioctyl phthalate. Each sensor was conditioned for at least two days in 0.1 M drug solution before use. It exhibited fast and stable Nernstian response for melatonin and oxomemazine over the concentration range of 1.0×10?6–1.0×10?2 M and 1.0×10?5–1.0×10?2 M, pH range of 3.0–6.5 and 3.5–6.0 for melatonin and oxomemazine sensors, respectively. Results with an average recovery not more than 101 % and a mean standard deviation less than 1.0 % of the nominal were obtained for the four sensors. The sensors showed reasonable selectivity towards investigated drugs in presence of many cations.  相似文献   

12.
Plasticised membranes using 2-[{(2-hydroxyphenyl)imino}methyl]-phenol (L1) and 2-[{(3-hydroxyphenyl)imino}methyl]-phenol (L2), have been prepared and investigated as Cu2+ ion-selective sensors. Effect of various plasticisers, namely, dibutyl phthalate (DBP), dibutyl sebacate (DBS), benzyl acetate (BA), o-nitrophenyloctylether (o-NPOE) and anion excluders, oleic acid (OA) and sodium tetraphenylborate (NaTPB) was studied and improved performance was observed in several instances. Optimum performance was observed with membranes of (L1) having composition L1 : DBS : OA : PVC in the ratio of 6 : 54 : 10 : 30 (w/w, %). The sensor works satisfactorily in the concentration range 3.2 × 10?8–1.0 × 10?1 mol L?1 with a Nernstian slope of 29.5 ± 0.5 mV decade?1 of a cu2+ . The detection limit of the proposed sensor is 2.0 × 10?8 mol L?1 (1.27 ng mL?1). Wide pH range (3.0–8.5), fast response time (7 s), sufficient (up to 25% v/v) non-aqueous tolerance and adequate shelf life (3 months) indicate the utility of the proposed sensor. The potentiometric selectivity coefficients as determined by matched potential method indicate selective response for Cu2+ ions over various interfering ions, and therefore could be successfully used for the determination of copper in edible oils, tomato plant material and river water.  相似文献   

13.
Novel ligand 5,5?-((3-nitrophenyl)methylene)bis(2,6-diaminopyrimidin-4(3H)-one) (L) was synthesised and characterised. Preliminary studies on L have showed that it has more affinity towards the Ni2+ ion. Thus, the L was used as the electroactive material in the fabrication of poly(vinyl chloride) (PVC)-based membrane sensors such as coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE). Several polymeric membranes were fabricated by incorporating L as ionophore, NaTPB as anion excluders and BA, 1-CN, DBP, DOP and o-NPOE as solvent mediators and their effect on potentiometric response studied. Comparative electroanalytical studies performed on the CGE and CPGE depict that the CPGE with optimised membrane composition of L:PVC:o-NPOE:NaTPB in the ratio of 7:33:58:2 (w/w, mg) exhibited the best response in terms of wide working concentration range from 2.0 × 10?8 to 1.0 × 10?1 mol L?1, (3.64 µg L?1 –18.2 g L?1) lower detection limit of 8.1 × 109 mol L?1 (1.47 µg L?1) with Nernstian compliance of 29.4 ± 0.2 mV decade?1 of activity of Ni2+ ion in the pH range of 3.5–9.0. The sensor can work satisfactorily in water–acetonitrile and water–methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor showed fast response time of 8 s and could be used successfully for a period of 4 months. The sensor reflects its utility in the quantification of Ni2+ ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Ni2+ ion with EDTA.  相似文献   

14.
The construction and general performance characteristics of two poly(vinyl chloride) matrix chemical sensors for lead were described. These sensors were based on the use of ion association complexes of trihydroxoplumbate, [Pb(OH)3]? and tetraiodoplumbate, [PbI4]2?with cetylpyridinium chloride (CP) and iron(II)‐4,7‐bathophenanthroline [Fe(bphen)3]2+ as novel electroactive materials dispersed in o‐nitrophenyloctyl ether (o‐NPOE) plasticizer for ionometric sensor controls, respectively. The sensing membrane (3×5 mm) is immobilized on a wafer polyimide chip (size 13.5×3.5 mm) to offer a planar miniaturized design that could be easily used flow injection system. Under static modes of operation, the sensors revealed a near Nernstian response over a wide Pb2+ ion concentration range 7.9×10?7 to 10?4 and 3.2×10?7 to 10?4 mol L?1 with detection limit of 100 and 45.5 ng mL?1, respectively . In flow injection potentiometry, excellent reproducibility (RSD%=0.5%), fast response, high sensitivity, high sampling rate (50 sample h?1) and stable baseline was observed in the presence of 5×10?2 mol L?1 NaOH and 10?1 mol L?1 KI as a carrier for [CP][Pb(OH)3] and [Fe(bphen)3][PbI4] membrane based sensors, respectively. Validation of the assay method according to the quality assurance standards (range, within‐day repeatability, between‐day variability, standard deviation, accuracy, lower detection limit) reveals good performance characteristics and suggests application for routine determination of lead in industrial wastewaters and stack emissions of lead smelters. The results agree fairly well with data obtained by the standard atomic absorption methods.  相似文献   

15.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

16.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

17.
In this study, all‐solid‐state type potentiometric PVC membrane selective microsensor was developed for Metformin (MET) which is an antidiabetic drug active substance. Metformin‐tetraphenylborate (MET‐TPB) ion‐pair was used as an ionophore in the structure of the sensor membrane. It was determined that the sensor membrane at the ratio of 69 % o‐nitrophenyl octyl ether, 27 % polyvinyl chloride and 4 % MET‐TPB performed the best potentiometric performance. In a wide concentration range (1×10?5–1×10?1 mol/L), the slope, detection limit, response time, pH range, and life‐time of the sensor were determined as 55.9±1.6 mV (R2=0.996), 3.35×10?6 mol/L, 8–10 s, pH: 3–8, and ~10 weeks, respectively. The voltammetric performances of the sensor were also investigated. The prepared microsensor was successfully utilized for the determination of Metformin in a pharmaceutical drug sample by potentiometry and voltammetry. It was observed that the obtained results were in agreement with the results obtained by the UV spectroscopy method at 95 % confidence level.  相似文献   

18.
《Analytical letters》2012,45(10):1923-1938
Abstract

In this work, for the first time, we introduce a highly selective and sensitive lutetium(III) micro‐sensor. N‐(2‐furylmethylene) pyridine‐2,6‐diamine (FPD) was used as a membrane‐active component to prepare a highly sensitive Lu(III)‐selective polymeric membrane microelectrode. Theoretical calculations for FPD, lutetium and some other metal ions were carried out and selectivity toward Lu(III) ions was confirmed. The best performance was achieved by a membrane composed of 32% PVC, 60% o‐nitrophenyloctyl ether, 4% potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) and 4% FPD. The electrode exhibits a Nernstian response for Lu(III) ions over a particular concentration range (1.0×l0?11?1.0×10?6 mol l?1) with a slope of 20.5±0.2 mV decade?1. The detection limit is 3.0×10?11 mol l?1 while the sensor presents a response time of <10 s and a useful working pH range of 4.0–10.5. As a matter of fact, the proposed sensor discriminates relatively well for Lu(III) ions in compare to common alkali, alkaline earth, heavy metals and, specially, lanthanide ions. The sensor was successfully applied as an indicator electrode in a potentiometric titration of Lu(III) ions with EDTA. In addition, it was used for determination of lutetium in some soil samples where domestic devices were stored. The proposed sensor was evaluated for Lu(III) ions determination in some binary mixtures.  相似文献   

19.
Poly(vinyl chloride) polymeric membrane sensors containing Sn(IV) phthalocyanine dichloride (SnPC) and Co(II) phthalocyanine (CoPC) as novel electroactive materials dispersed in o‐nitrophenyl octylether (o‐NPOE) as a plasticizer are examined potentiometrically with respect to their response toward selenite (SeO32?) ions. Fast Nernstian response for SeO32? ions over the concentration ranges 7.0×10?6–1.0×10?3 and 8.0×10?6–1.0×10?3 mol L?l at pH 3.5–8.5 with lower detection limit of 5.0×10?6 and 8.0×10?6 mol L?1 and calibration slopes of ?25.4 and ?29.7 mV decade?1 are obtained with SnPC and CoPC based membrane sensors, respectively. The proposed sensors reveals by the modified separate solution method (MSSM) a good selectivity over different anions which differ significantly from the classical Hofmeister series. A segmented sandwich membrane method is used to determine complex formation constants of the ionophores in situe in the solvent polymeric sensing membranes. Membrane incorporating CoPC in a tubular flow detector is used in a two channels flow injection set up for continuous monitoring of selenite at a frequency of ca. 50 samples h?1. Direct determination of selenium in pharmaceutical formulations and anodic slime gives results in good agreement with data obtained using standard ICP method.  相似文献   

20.
目的:建立刺激胰岛素分泌的新型降糖药物(-)-2 (S)-苄基-4-酮-4-(顺式-全氢化异吲哚-2-基)丁酸钙对映体的HPLC拆分方法。方法:采用Sumichiral OA-3300手性柱(250 × 4.6 mm I.D., 5 μm), 柱温35℃,以0.05 mol·L-1醋酸铵的甲醇溶液为流动相,检测波长为210 nm。结果:本品两对映体在22分钟内实现良好分离,分离度达3以上,S-异构体分别在0.028 ~ 5.6 μg mL-1和0.03 ~ 6.0 μg mL-1范围内线性关系良好,回归方程分别为:Y=1.32×103x-2.54 (r=0.9997)和Y=1.15×103x-1.78 (r=0.9998),最低检测限分别为0.15 ng和0.10 ng,方法精密度RSD低于1.0% (n=5)。结论:建立的对映体分离方法可用于本品光学异构体的质量控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号