首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biotransformations of hyodeoxycholic acid with various Rhodococcus spp. are reported. Some strains (i.e., Rhodococcus zopfii, Rhodococcus ruber, and Rhodococcus aetherivorans) are able to partially degrade the side chain at C(17) to afford 6α‐hydroxy‐3‐oxo‐23,24‐dinor‐5β‐cholan‐22‐oic acid ( 2 ; 23%) and 6α‐hydroxy‐3‐oxo‐23,24‐dinorchol‐1,4‐dien‐22‐oic acid ( 3 ; 23–30%), together with two new 9,10‐secosteroids 4 and 5 (10–45%), still bearing the partial side chain at C(17) and adopting an intramolecular hemiacetal form. In addition, the 9,10‐secosteroid 5 showed an unprecedented C(4)‐hydroxylation. The new secosteroids were fully characterized by MS, IR, NMR, and 2D‐NMR analyses.  相似文献   

2.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

3.
Bioactivity‐guided isolation of the rare gorgonian Muricella sibogae (Nutting ) yielded the two new eunicellin diterpenes sibogin A and B ( 1 and 2 ), the three new 9,10‐secosteroids sibogol A–C ( 6 – 8 ), together with the three known eunicellin diterpenes 3 – 5 and the five known 9,10‐secosteroids 9 – 13 . Their structures were established by extensive spectral analysis (1D‐ and 2D‐NMR, IR, and MS). The cytotoxicity of the isolates 1 – 13 was evaluated in vitro against the selected tumor cell lines P388 and BEL‐7402. All the compounds showed only weak activity against P388 cell lines, with an inhibition rate ranging from 10 to 60% at a concentration of 50 μg/ml, whereas the were inactive against BEL‐7402 cell lines.  相似文献   

4.
Two phosphine ligands of [Pd(PPh3)4] were substituted by π(C?S) coordination of 4‐bromodithiobenzoic acid methyl ester resulting in complex 1 . The same ester, after alkylation, afforded the dicationic complex bis(μ‐methanethiolato)tetrakis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 2 ) from the same palladium source. A related thiolato‐bridged complex, bis(μ‐methanethiolato)bis(1‐methylpyridin‐2(1H)‐ylidene)bis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 4 ) and the trinuclear cluster tris(μ‐methanethiolato)tris(triphenylphosphine)tripalladium(+)(3Pd? Pd) ( 5 ) resulted from treatment of a known cationic pyridinylidene complex with MeSLi. The double oxidative substitution reaction of [Pd(PPh3)4] with 1,5‐dichloro‐9,10‐anthraquinone afforded trans‐dichloro[μ‐(9,10‐dihydro‐9,10‐dioxoanthracene‐1,5‐diyl)]tetrakis(triphenylphosphine)dipalladium ( 6 ). Some of these complexes could be fully characterized by 1H‐, 13C‐, and 31P‐NMR spectroscopy, mass spectrometry, and elemental analysis. The crystal and molecular structures of all of them, and of trans‐bis(1,3‐dihydro‐1,3‐dimethyl‐2H‐imidazol‐2‐ylidene)diiodopalladium ( 3 ), were determined by single‐crystal X‐ray diffraction.  相似文献   

5.
Crystals of the bis(tert‐butyl)silylene (DTBS) derivatives of the tartaric acids were synthesized from D ‐, L ‐, rac‐, and meso‐tartaric acid and DTBS bis(trifluoromethanesulfonate): two polymorphs of Si2tBu4(L ‐Tart1,2;3,4H–4) (L ‐ 1a and L ‐ 1b ), the mirror image of the denser modification (D ‐ 1b ) as well as the racemate ( 2 ), and the meso analogue Si2tBu4(meso‐Tart1,3;2,4H–4) ( 3 ). The structures were determined by single‐crystal X‐ray diffraction. The threo‐configured D ‐ and L ‐ (and rac‐) tartrates were coordinated by two tBu2Si units forming five‐membered chelate rings, whereas the erythro‐configured meso‐tartrate formed six‐membered chelate rings. The new compounds were analyzed by NMR techniques, including 29Si NMR spectroscopy, and single‐crystal X‐ray crystallography.  相似文献   

6.
The synthesis and crystal structures of two new rhenium(I) complexes obtained utilizing benzhydroxamic acid (BHAH) and 3‐hydroxyflavone (2‐phenylchromen‐4‐one, FlavH) as bidentate ligands, namely tetraethylammonium fac‐(benzhydroxamato‐κ2O,O′)bromidotricarbonylrhenate(I), (C8H20N)[ReBr(C7H6NO2)(CO)3], 1 , and fac‐aquatricarbonyl(4‐oxo‐2‐phenylchromen‐3‐olato‐κ2O,O′)rhenium(I)–3‐hydroxyflavone (1/1), [Re(C15H9O3)(CO)3(H2O)]·C15H10O3, 3 , are reported. Furthermore, the crystal structure of free 3‐hydroxyflavone, C15H10O3, 4 , was redetermined at 100 K in order to compare the packing trends and solid‐state NMR spectroscopy with that of the solvate flavone molecule in 3 . The compounds were characterized in solution by 1H and 13C NMR spectroscopy, and in the solid state by 13C NMR spectroscopy using the cross‐polarization magic angle spinning (CP/MAS) technique. Compounds 1 and 3 both crystallize in the triclinic space group P with one molecule in the asymmetric unit, while 4 crystallizes in the orthorhombic space group P212121. Molecules of 1 and 3 generate one‐dimensional chains formed through intermolecular interactions. A comparison of the coordinated 3‐hydroxyflavone ligand with the uncoordinated solvate molecule and free molecule 4 shows that the last two are virtually completely planar due to hydrogen‐bonding interactions, as opposed to the former, which is able to rotate more freely. The differences between the solid‐ and solution‐state 13C NMR spectra of 3 and 4 are ascribed to inter‐ and intramolecular interactions. The study also investigated the potential labelling of both bidentate ligands with the corresponding fac99mTc‐tricarbonyl synthon. All attempts were unsuccessful and reasons for this are provided.  相似文献   

7.
Diaryl‐substituted triazenides Ar(Ar′)N3HgX [Ar/Ar′ = Dmp/Mph, X = Cl ( 2a ), Br ( 3a ), I ( 4a ); Ar/Ar′ = Dmp/Tph, X = Cl ( 2b ), I ( 4b ) with Mph = 2‐MesC6H4, Mes = 2,4,6‐Me3C6H2, Tph = 2′,4′,6′‐triisopropylbiphenyl‐2‐yl and Dmp = 2,6‐Mes2C6H3] were synthesized by salt‐metathesis reactions in ethyl ether from the readily available starting materials Ar(Ar′)N3Li and HgX2. These compounds may be used for redox‐transmetallation reactions with rare‐earth or alkaline earth metals. Thus, reaction of 4b or 2b with magnesium or ytterbium in tetrahydrofuran afforded the triazenides Dmp(Tph)N3MX(thf) ( 5b : M = Mg, X = I; 6b : M = Yb, X = Cl) in good yield. All new compounds were characterized by melting point, 1H and 13C NMR spectroscopy and for selected species by IR spectroscopy or mass spectrometry. In addition, the solid‐state structures of triazenides 2a , 2b , 3a , 4b , 5b and 6b were investigated by single‐crystal X‐ray diffraction.  相似文献   

8.
Four metal‐ion‐binding nucleosides, viz. 2,6‐bis(1‐methylhydrazinyl)‐9‐(β‐D ‐ribofuranosyl)‐9H‐purine ( 2a ) and its N‐acetylated derivative, 2b , 2,4‐bis(3,5‐dimethyl1H‐pyrazol‐1‐yl)‐5‐(β‐D ‐ribofuranosyl)pyrimidine ( 3 ), and 2,4‐bis(1‐methylhydrazinyl)‐5‐(β‐D ‐ribofuranosyl)pyrimidine ( 4 ) have been synthesized. The ability of these nucleosides and the previously prepared 2,6‐bis(3,5‐dimethyl1H‐pyrazol‐1‐yl)‐9‐(β‐D ‐ribofuranosyl)‐9H‐purine to form Pd2+‐ and Hg2+‐mediated complexes with uridine has been studied by 1H‐NMR spectroscopy. To obtain additional support for the interpretation of the NMR data, comparative measurements on the ternary‐complex formation between pyridine‐2,6‐dicarboxamide ( 5 ), pyrimidine nucleosides, and K2PdCl4 were carried out.  相似文献   

9.
3‐Hydroxyquinoline‐2,4‐diones 1 react with isocyanates to give novel 1,2,3,4‐tetrahydro‐2,4‐dioxoquinolin‐3‐yl (alkyl/aryl)carbamates 2 and/or 1,9b‐dihydro‐9b‐hydroxyoxazolo[5,4‐c]quinoline‐2,4(3aH,5H)‐diones 3 . Both of these compounds are converted, by boiling in cyclohexylbenzene solution in the presence of Ph3P or 4‐(dimethylamino)pyridine, to give 3‐(acyloxy)‐1,3‐dihydro‐2H‐indol‐2‐ones 8 . All compounds were characterized by IR, and 1H‐ and 13C‐NMR spectroscopy, as well as by EI mass spectrometry.  相似文献   

10.
Using phosphoryl chloride as a substrate, a family of 1,3,2‐bis(arylamino) phospholidine, 2‐oxide of the general formula ; (X=Cl, 6a ; X=NMe2, 1b ; X=N(CH2C6H5)(CH3), 2b ; X=NHC(O)C6H5, 3b ; X=4Me‐C6H4O, 4b ; X=C6H5O, 5b ; X=NHC6H11, 6b ; X=OC4H8N, 7b ; X=C5H10N, 8b ; X=NH2, 9b ; X=F, 10b and Ar=4Me‐C6H4) was prepared and characterized by 1H, 19F, 31P and 13C NMR and IR spectroscopy, and elemental analysis. A general and practical method for the synthesis of these compounds was selected. The structures of 6a and 2b were determined by single‐crystal X‐ray diffraction techniques. The low temperature NMR spectra of 2b revealed the restricted rotation of P‐N bond according to two independent molecules in crystalline lattice.  相似文献   

11.
Oxidative addition reactions of quinolines 1a , b with Pd(dba)2 in the presence of PPh3 (1:2) in acetone gave dinuclear palladium complexes [Pd(C,N‐2‐C9 H4N‐CHO‐3‐R‐6)Cl(PPh3)]2 [(R = H ( 2a ), R = OMe ( 2b ), which were reacted with isocyanide XyNC (Xy = 2,6‐Me2C6H3) to give novel iminoacyl quinolinylpalladium complexes 3a , b in good yields (81 and 77%). Cyclopalladated complexes 3a , b were also obtained in low yields (39 and 33.5%) via one‐pot reaction of 1a , b with isonitrile XyNC:Pd(dba)2 (4:1). The reaction of 3a , b with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of complexes to provide the corresponding organic compounds 4a , b , 5a , b and 6a , b in yields of 41, 27 and 18 ? 19%, respectively. The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures 2a , 3a and 3b were determined by X‐ray diffraction studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The reaction of one equivalent of LAlH2 ( 1 ; L=HC(CMeNAr)2, Ar=2,6‐iPr2C6H3, β‐diketiminate ligand) with two equivalents of 2‐mercapto‐4,6‐dimethylpyrimidine hydrate resulted in LAl[(μ‐S)(m‐C4N2H)(CH2)2]2 ( 2 ) in good yield. Similarly, when N‐2‐pyridylsalicylideneamine, N‐(2,6‐diisopropylphenyl)salicylaldimine, and ethyl 3‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐2‐carboxylate were used as starting materials, the corresponding products LAl[(μ‐O)(o‐C6H4)CN(C5NH4)]2 ( 3 ), LAlH[(μ‐O)(o‐C4H4)CN(2,6‐iPr2C6H3)] ( 4 ), and LAl[(μ‐NH)(o‐C8SH8)(COOC2H5)]2 ( 5 ) were isolated. Compounds 2 – 5 were characterized by 1H and 13C NMR spectroscopy as well as by single‐crystal X‐ray structural analysis. Surprisingly, compounds 2 – 5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).  相似文献   

13.
Reductive coupling reaction of aryliminomethylferrocenes FcCH = NAr[(1, Ar=QHs (a), p‐ClC6H4 (b), p‐BrC6H4 (c), p‐CH3C6H4 (d), m‐ClC6H4 (e)] with triethyl orthoformate (2) in Zn‐TiCl4 system gave three kinds of products: 1, 3‐diaryl‐4, 5‐diferrocenyl imidazolidines (3), N, N‐disubstituted formamides (4), and 1, 2‐diferrocenyl ethylene (5). 1H NMR spectra proved that all the compounds 3 obtained were dl‐isomers. All the new compounds 3 and 4 were characterized by elemental analysis, 1H NMR, 13C NMR (for 3) and IR spectra. The molecular structure of 3c was determined by X‐ray diffraction.  相似文献   

14.
1H‐Indeno[1,2‐d]pyrimidine‐2,5(3H,9bH)‐dione derivatives 2(a‐i) and 2,3‐dihydro‐2‐thioxo‐1H‐indeno[1,2‐d]pyrimidine‐5(9bH)‐ones 2(j‐q) were synthesized via an intramolecular Friedel‐Crafts reaction between the aryl and ester group of ethyl 6‐methyl‐4‐aryl‐2‐oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylates 1a‐i , and their thioxo analogs using AlCl3 and acetyl chloride in nitrobenzene. Yields of the products, after washing with THF, were of the order of 45‐69%. IR and NMR spectroscopy together with elemental analysis were used for identification of these compounds.  相似文献   

15.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

16.
The crystal structure of cholic acid–pentan‐3‐one (1/1), C5H10O·C24H40O5, has been determined in order to deduce the molecular conformation of the small volatile ketone. Data were collected at 100 K to a resolution of (sin θ)/λ = 0.91 Å−1. The structure contains a hydrogen‐bonded cholic acid host network, forming only van der Waals interactions with the guest pentan‐3‐one molecules. The ketone molecules are disordered on general positions, with two clearly identifiable conformations. The majority conformer exhibits approximate C2 symmetry and is similar to that recently observed by microwave spectroscopy in the gas phase.  相似文献   

17.
Pakistolides A and B, novel dimeric β‐(glucosyloxy)benzoates were isolated from Berchemia pakistanica and assigned structures 1 and 2 on the basis of extensive NMR studies. In addition, the known compounds 7,5′‐dimethoxy‐3,5,2′‐trihydroxyflavone (=3,5‐dihydroxy‐2‐(2‐hydroxy‐5‐methoxyphenyl)‐7‐methoxy‐4H‐1‐benzopyran‐4‐one), 4′,5‐dihydroxy‐3,6,7‐trimethoxyflavone (=5‐hydroxy‐2‐(4‐hydroxyphenyl)‐3,6,7‐trimethoxy‐4H‐1‐benzopyran‐4‐one), 5,6‐dihydroxy‐4,7‐dimethoxy‐2‐methylanthracene‐9,10‐dione, and 1,3,4‐trihydroxy‐6,7,8‐trimethoxy‐2‐methylanthracene‐9,10‐dione were reported for the first time from the genus Berchemia. Both 1 and 2 showed significant α‐glucosidase and lipoxygenase inhibitory activities, while 2 also showed antioxidant potential.  相似文献   

18.
Chitosan ( 1 ) was prepared by basic hydrolysis of chitin of an average molecular weight of 70000 Da, 1H‐NMR spectra indicating almost complete deacetylation. N‐Phthaloylation of 1 yielded the known N‐phthaloylchitosan ( 2 ), which was tritylated to provide 3a and methoxytritylated to 3b . Dephthaloylation of 3a with NH2NH2?H2O gave the 6‐O‐tritylated chitosan 4a . Similarly, 3b gave the 6‐O‐methoxytritylated 4b . CuSO4‐Catalyzed diazo transfer to 4a yielded 95% of the azide 5a , and uncatalyzed diazo transfer to 4b gave 82% of azide 5b . Further treatment of 5a with CuSO4 produced 2‐azido‐2‐deoxycellulose ( 7 ). Demethoxytritylation of 5b in HCOOH gave 2‐azido‐2‐deoxy‐3,6‐di‐O‐formylcellulose ( 6 ), which was deformylated to 7 . The 1,3‐dipolar cycloaddition of 7 to a range of phenyl‐, (phenyl)alkyl‐, and alkyl‐monosubstituted alkynes in DMSO in the presence of CuI gave the 1,2,3‐triazoles 8 – 15 in high yields.  相似文献   

19.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

20.
A facile and general synthetic pathway for the production of dearomatized, allylated, and C? H bond activated pyridine derivatives is presented. Reaction of the corresponding derivative with the previously reported reagent bis(allyl)calcium, [Ca(C3H5)2] ( 1 ), cleanly affords the product in high yield. The range of N‐heterocyclic compounds studied comprised 2‐picoline ( 2 ), 4‐picoline ( 3 ), 2,6‐lutidine ( 4 ), 4‐tert‐butylpyridine ( 5 ), 2,2′‐bipyridine ( 6 ), acridine ( 7 ), quinoline ( 8 ), and isoquinoline ( 9 ). Depending on the substitution pattern of the pyridine derivative, either carbometalation or C? H bond activation products are obtained. In the absence of methyl groups ortho or para to the nitrogen atom, carbometalation leads to dearomatized products. C(sp3)? H bond activation occurs at ortho and para situated methyl groups. Steric shielding of the 4‐position in pyridine yields the ring‐metalated product through C(sp2)? H bond activation instead. The isolated compounds [Ca(2‐CH2‐C5H4N)2(THF)] ( 2 b ?(THF)), [Ca(4‐CH2‐C5H4N)2(THF)2] ( 3 b ?(THF)2), [Ca(2‐CH2‐C5H3N‐6‐CH3)2(THF)n] ( 4 b ?(THF)n; n=0, 0.75), [Ca{2‐C5H3N‐4‐C(CH3)3}2(THF)2] ( 5 c ?(THF)2), [Ca{4,4′‐(C3H5)2‐(C10H8N2)}(THF)] ( 6 a ?(THF)), [Ca(NC13H9‐9‐C3H5)2(THF)] ( 7 a ?(THF)), [Ca(4‐C3H5‐C9H7N)2(THF)] ( 8 b ?(THF)), and [Ca(1‐C3H5‐C9H7N)2(THF)3] ( 9 a ?(THF)3) have been characterized by NMR spectroscopy and metal analysis. 9 a ?(THF)4 and 4 b ?(THF)3 were additionally characterized in the solid state by X‐ray diffraction experiments. 4 b ?(THF)3 shows an aza‐allyl coordination mode in the solid state. Based on the results, mechanistic aspects are discussed in the context of previous findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号