首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.  相似文献   

2.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

3.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

4.
In this work, an ultrasensitive electrochemical microRNA detection strategy was developed based on porous palladium-modified horseradish peroxidase sphere (Pd@HRP) and target-induced assembly of DNAzyme. A highly loaded HRP sphere was prepared by covalent layer-by-layer assembly with CaCO3 as sacrificial template for the first time, and was further modified with porous Pd. Notably, Pd@HRP composite showed a good redox activity of HRP and electrocatalytic activity toward H2O2. The utilization of Pd@HRP as electrochemical signal indicator and enhancer to fabricate biosensor could avoid the need for additional redox mediator and amplify the detection sensitivity. Moreover, target recycling amplification was achieved by Pb2+-induced cleavage of ternary “Y” structure, circumventing the use of labile nuclease. Subsequent DNA concatamer synthesized through rolling circle amplification (RCA) reaction with cleaved hairpin probe as primer, hybridized with plentiful Pd@HRP-DNA probes, which led to the increased loading of redox-active and electrocatalytic Pd@HRP for sensitivity improvement. So the proposed electrochemical biosensor detected miRNA-24 down to 0.2 fM (S/N = 3) with a wide linear range from 3 fM to 1 nM. With bifunctional Pd@HRP tag, DNAzyme-aided target recycle and programmable junction probe, this strategy possessed the advantages of high efficiency, high sensitivity, low cost and versatility, and thus held great promise for other low-abundance nucleic acids determination.  相似文献   

5.
《Electroanalysis》2017,29(3):917-922
A ferrocenyl intercalator was investigated to develop an electrochemical DNA biosensor employing a peptide nucleic acid (PNA) sequence as capture probe. After hybridization with single strand DNA sequence, a naphthalene diimide intercalator bearing ferrocene moieties (FND) was introduced to bind with the PNA‐DNA duplex and the electrochemical signal of the ferrocene molecules was used to monitor the DNA recognition. Electrochemical impedance spectroscopy was used to characterize the different modification steps. Differential pulse voltammetry was employed to evaluate the electrochemical signal of the FND intercalator related to its interaction with the complementary PNA‐DNA hybrid. The ferrocene oxidation peaks were utilised for the target DNA quantification. The developed biosensor demonstrated a good linear dependence of FND oxidation peak on DNA concentration in the range 1 fM to 100 nM of target DNA, with a low detection limit of 11.68 fM. Selectivity tests were also investigated with a non‐complementary DNA sequence, indicating that the FND intercalator exhibits a selective response to the target PNA‐DNA duplex.  相似文献   

6.
A simple competitive strategy was designed for the sensitive detection of sequence‐specific DNA by combining endonuclease‐assisted target recycling and electrochemical stripping analysis of silver nanoparticles (AgNPs). The AgNP‐tagged carbon nanospheres were synthesized by means of in situ reduction of Ag+ adsorbed onto a negatively charged polyelectrolyte layer and functionalized with streptavidin for binding biotin‐labeled DNA strands. The labeled strand was captured on the DNA sensor surface by competitive hybridization of biotinated primer 1 and its cleaved product. The cleaved product could be amplified in homogeneous solution by endonuclease‐assisted target recycling with a Y‐shaped junction DNA structure, thus leading to the correlation of the stripping signal to the target concentration. The functionalized nanosphere was characterized with X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The proposed method showed a linear range from 0.1 to 1000 fM with a limit of detection of 0.066 fM (3σ) and good selectivity for base discrimination. The designed strategy provided a sensitive tool for DNA analysis and could be widely applied in bioanalysis and biomedicine.  相似文献   

7.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   

8.
The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence.  相似文献   

9.
The new acridone derivative 5, 7-dinitro-2-sulfo-acridone (DSA) with excellent electrochemical activity was synthesized and reported for the first time in this paper. Then an electrochemical biosensor was fabricated for the signal amplified detection of microRNA (miRNA) via applying home-made DSA as signal unit. The p19 protein-functionalized magnetic beads (PFMBs) for specific recognition and enrichment of miRNA. Then DSA is combined with the long DNA concatamers, which functions as a signal enhancement platform to facilitate the high selectivity and sensitivity determination of miRNA. The usage of this novel electrochemical activity made a contribution to the performance of the approach, such as achieving a detection limit of 6 aM. To the best of our knowledge, this is the first attempt to apply DSA, PFMBs and long DNA concatamers for the fabrication of the electrochemical biosensors, which may represent a promising path toward early diagnosis of cancer at the point of care.  相似文献   

10.
The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells.  相似文献   

11.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   

12.
In this paper, we report a new signal amplification strategy for highly sensitive and enzyme-free method to assay proteins based on the target-driven self-assembly of stacking deoxyribonucleic acids (DNA) on an electrode surface. In the sensing procedure, binding of target protein with the aptamer probe is used as a starting point for a scheduled cycle of DNA hairpin assembly, which consists of hybridization, displacement and target regeneration. Following numbers of the assembly repeats, a great deal of DNA duplexes can accordingly be formed on the electrode surface, and then switch on a succeeding propagation of self-assembled DNA concatemers that provide further signal enhancement. In this way, each target binding event can bring out two cascaded DNA self-assembly processes, namely, stacking DNA self-assembly, and therefore can be converted into remarkably intensified electrochemical signals by associating with silver nanoparticle-based readout. Consequently, highly sensitive detection of target proteins can be achieved. Using interferon-gamma as a model, the assay method displays a linear range from 1 to 500 pM with a detection limit of 0.57 pM, which is comparable or even superior to other reported amplified assays. Moreover, the proposed method eliminates the involvement of any enzymes, thereby enhancing the feasibility in clinical diagnosis.  相似文献   

13.
A nanogapped microelectrode-based biosensor array is fabricated for ultrasensitive electrical detection of microRNAs (miRNAs). After peptide nucleic acid (PNA) capture probes were immobilized in nanogaps of a pair of interdigitated microelectrodes and hybridization was performed with their complementary target miRNA, the deposition of conducting polymer nanowires, polyaniline (PAn) nanowires, is carried out by an enzymatically catalyzed method, where the electrostatic interaction between anionic phosphate groups in miRNA and cationic aniline molecules is exploited to guide the formation of the PAn nanowires onto the hybridized target miRNA. The conductance of the deposited PAn nanowires correlates directly to the amount of the hybridized miRNA. Under optimized conditions, the target miRNA can be quantified in a range from 10 fM to 20 pM with a detection limit of 5.0 fM. The biosensor array is applied to the direct detection of miRNA in total RNA extracted from cancer cell lines.  相似文献   

14.
In this paper, we report an improved electrochemical aptasensor based on exonuclease III and double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) assisted signal amplification. In this sensor, duplex DNA from the hybridization of ligated thrombin-binding aptamer (TBA) subunits and probe DNA can act as an effective template for the formation of CuNPs on the electrode surface, so copper ions released from acid-dissolution of CuNPs may catalyze the oxidation of ο-phenylenediamine to produce an amplified electrochemical response. In the presence of thrombin, a short duplex domain with four complementary base pairs can be stabilized by the binding of TBA subunits with thrombin, in which TBA subunit 2 can be partially digested from 3′ terminal with the cycle of exonuclease III, so the ligation of TBA subunits and the subsequent formation of CuNPs can be inhibited. By electrochemical characterization of dsDNA-templated CuNPs on the electrode surface, our aptasensor can display excellent performances for the detection of thrombin in a broad linear range from 100 fM to 1 nM with a low detection limit of 20.3 fM, which can also specially distinguish thrombin in both PBS and serum samples. Therefore, our aptasensor might have great potential for clinical diagnosis of biomarkers in the future.  相似文献   

15.
DNA three‐way junctions (DNA 3WJ) have been widely used as important building blocks for the construction of DNA architectures and dynamic assemblies. Herein, we describe for the first time a catalytic hairpin assembly‐programmed DNA three‐way junction (CHA‐3WJ) strategy for the enzyme‐free and amplified electrochemical detection of target DNA. It takes full advantage of the target‐catalyzed hairpin assembly‐induced proximity effect of toehold and branch‐migration domains for the ingenious execution of the strand displacement reaction to form the DNA 3WJ on the electrode surface. A low detection limit of 0.5 pM with an excellent selectivity was achieved for target DNA detection. The developed CHA‐3WJ strategy also offers distinct advantages of simplicity in probe design and biosensor fabrication, as well as enzyme‐free operation. Thus, it opens a promising avenue for applications in bioanalysis, design of DNA‐responsive devices, and dynamic DNA assemblies.  相似文献   

16.
MicroRNAs (miRNAs) play an important regulatory role in cells and dysregulation of miRNA has been associated with a variety of diseases, making them a promising biomarker. In this work, a novel biosensing strategy has been developed for label-free detection of miRNA using surface plasmon resonance (SPR) coupled with DNA super-sandwich assemblies and biotin–strepavidin based amplification. The target miRNA is selectively captured by surface-bound DNA probes. After hybridization, streptavidin is employed for signal amplification via binding with biotin on the long DNA super-sandwich assemblies, resulting in a large increase of the SPR signal. The method shows very high sensitivity, capable of detecting miRNA at the concentration down to 9 pM with a wide dynamic range of 6 orders of magnitude (from 1 × 10−11 M to 1 × 10−6 M) in 30 min, and excellent specificity with discriminating a single base mismatched miRNA sequence. This biosensor exhibits good reproducibility and precision, and has been successfully applied to the detection of miRNA in total RNA samples extracted from human breast adenocarcinoma MCF-7 cells. It, therefore, offers a highly effective alternative approach for miRNA detection in biomedical research and clinical diagnosis.  相似文献   

17.
We describe a new electrochemical biosensor based on estrogen receptor α (ER‐α) for label‐free detection of 17β‐estradiol, a model of endocrine‐disrupting compounds. ER‐α is coupled onto the gold electrode through its 6‐His tag and NTA‐copper complex. After interaction of estradiol with ER‐α, the biosensor presents a well‐defined peak at +500 mV due to estradiol oxidation (E17 peak). The linear range of detection is from 1 fM to 1 nM and the detection limit is 1 fM. Good selectivity was obtained for interfering substances at nanomolar level, for concentration of E17 up to 0.1 pM. The E17 was detected in hospital effluents.  相似文献   

18.
We report an electrochemical method for direct, reagentless, and label-free detection of microRNA, based on a conjugated copolymer, poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-2-carboxyethyl-1,4-naphthoquinone), acting as hybridization transducer. Hybridization between the oligonucleotide capture probe and a microRNA target of 22 base pairs generates an increase in the redox current (“signal-on”), which is evidenced by square wave voltammetry. Selectivity is good, with little hybridization for non-complementary targets, and the limit of detection reaches 650 fM. It is also evidenced that this sensitivity benefits from the high affinity of DNA for RNA.
Figure
The biosensor gives a current increase (signal-on) upon miRNA addition. It was shown that miRNAs give better sensitivity than corresponding DNAs.  相似文献   

19.
《Electroanalysis》2018,30(3):517-524
We propose a separation/concentration‐signal‐amplification in‐one method based on electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) to develop a facile and sensitive electrochemical biosensor for chloramphenicol (CAP) detection. Briefly, aptamer‐modified magnetic nanoparticles (MNPs‐Apt) was designed to capture CAP in sample, then the MNPs‐Apt composite was conjugated to Au electrode through the DNA hybridization between the unoccupied aptamer and a strand of complementary DNA. The ECC method was applied to transfer MNPs labels to electrochemically active Prussian blue (PB). The anodic and cathodic currents of PB were taken for signal readout. Comparing with conventional methods that require electrochemically active labels and related sophisticated labelling procedures, this method explored and integrated the magnetic and electrochemical properties of MNPs into one system, in turn realized magnetic capturing of CAP and signal generation without any additional conventional labels. Taking advantages of the high abundance of iron content in MNPs and the refreshing effect deriving from ECC process, the method significantly promoted the signal amplification. Therefore, the proposed biosensors exhibited linear detection range from 1 to 1000 ng mL−1 and a limit of detection down to 1 ng mL−1, which was better than or comparable with those of most analogues, as well as satisfactory specificity, storage stability and feasibility for real samples. The developed method may lead to new concept for rapid and facile biosensing in food safety, clinic diagnose/therapy and environmental monitoring fields.  相似文献   

20.
Gao Z 《The Analyst》2012,137(7):1674-1679
A simple and highly sensitive electrochemical assay for ligation-free and polymerase chain reaction (PCR)-free microRNA (miRNA) expression profiling is described in this work. The electrode used in the assay was made of a monolayer of stem-looped capture probes (CPs) comprising of a miRNA complementing region at one end and detection probes (DPs) receiving region at the other. It engaged an electrocatalytic reaction between electrochemically activated glucose oxidase (GOx) and glucose to enhance its sensitivity. Briefly, upon hybridizing to its target miRNA, the stem loop is unlocked exposing the DP receiving region. A subsequent hybridization with the DPs brought them together with an amplifier, the activated GOx, onto the electrode. The activated GOx exhibited excellent catalytic activity towards electrooxidation of glucose. MicroRNA detection could therefore be conducted in 60 mM glucose in phosphate-buffered saline. A detection limit of 4.0 fM and a linear calibration curve up to 10 pM were obtained under optimal conditions. The assay was applied to profile human let-7 miRNA expressions in cultured cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号